IV. THE FIRST PRINCIPLE

IV.1. CLOSED SYSTEM

The first law of classical thermodynamics deals with the equivalence of work transfer and heat transfer as forms of energy interactions. This principle encapsulates an experimental truth permanently ascertained in every energy transfer phenomenon. In Max Planck's words:

"is nothing more than the principle of the conservation of energy applied to phenomena involving the production or absorption of heat"

The first law and the second law of thermodynamics substantiated by the writings of William John MacQuorn Rankine, Rudolph Clausius and William Thomson (Lord Kelvin) in the early 1850s. They had to resolve together the conflict between Sadi Carnot's theory that assumed the conservation of "caloric" and the real evidence that work through friction represents the end of the "caloric" concept. Let us consider a closed system respectively a control volume having a boundary impermeable to mass transfer with its environment, see Fig. IV.1.

This system experiences a change of its state from the initial state (1) to a final one (2) as a result of the interactions with its environment, such as work and heat transfer. The first law of thermodynamics requires:

	Net	=	Heat	+	Work	=	System energy
	energy		transfer		transfer		change
	transfer						
	(m = 1)	\Rightarrow	(q _{1,2})	+	$(-\overline{w}_{1,2})$	=	(e₂ □e₁)
-	(m≠1)	⇒	(Q _{1,2})	+	$(-\overline{W}_{1,2})$	=	(E₂ □ ℍ)
		- !	energy transfers between				variation of the
			the system and its				property called
			environment				net system
			(non-properties)				energy
							-

According to the Equation (IV.1) the net energy transfer between the system and its environment (the left hand) is equal to the change in the thermodynamic

property called the net energy of the system (the right hand). The first law of thermodynamics defines in this way the net energy of a system as a property, which measures by its variation the energy interactions of the system with the surroundings. The sign in the left-hand terms observe the "*heat engine sign convention*", i.e. the heat transfer toward the system and the work transfer from the system are considered positive. The following scheme presents the two sign conventions:

The "*heat engine sign convention*" accordingly is to the purpose of a heat engine as a closed thermodynamic system wich consumes heat to perform work on its environment. The net energy of the system as a property depends only on the state of the system and consequently its change is equal to the ($E_2 \square E$) whereas the energy transfers as non-properties depend on the path (succesive states that link the ending states of the process).

The net energy system contains two kinds of energy:

$$E = U + E_{exterior} = U + (E_{kinetic} + E_{gravity})$$
(IV.2)

where: U is the internal energy which depends on the interior conditions, $E_{exterior}$ is the energy which depends on the exterior conditions:

$$E_{\text{exterior}} = E_{\text{kinetic}} + E_{\text{gravity}} = m \frac{c^2}{2} + mgz$$
 (IV.3)

(the velocity c is related to an arbitrarily chosen geometrical system and the position z in the gravity field is depending on an arbitrary imposed zero)

Historically the principle of energy conservation was distinctly substantiated for mechanical phenomena and thermal phenomena.

For every pure mechanical phenomenon we may write the Equation:

$$W_{\text{received}} = W_{\text{given}}$$
 (IV.4)

For any pure thermal phenomenon we can equate:

$$Q_{\text{received}} = Q_{\text{given}}$$
 (IV.5)

In Equation (IV.1) the work transfer $\overline{W}_{1,2}$ includes two terms:

$$\overline{W}_{1,2} = W_{1,2}^{deformation} + W_{1,2}^{exterior}$$
(IV.6)
where:
$$\begin{cases} W_{1,2}^{deformation} = + \int_{1}^{2} p \cdot dV \\ 1 \\ W_{1,2}^{exterior} = W_{1,2}^{kinetic \ energy} + W_{1,2}^{in \ the \ gravity \ field} \end{cases}$$
(IV.7)

The modification of the kinetic energy and the change of the position in the gravity field are clearly mechanical phenomenona and consequently:

$$-W_{1-2}^{\text{exterior}} = (E_{\text{kinetic},2} - E_{\text{kinetic},1}) + (E_{\text{gravity},2} - E_{\text{gravity},1}) \quad (IV.8)$$

Therefore for the closed thermodynamic systems, either moving or motionless, the Equation of the first principle becomes:

$$Q_{1,2} - W_{1,2} = \Delta U = U_2 - U_1$$
 (IV.9)

$$W_{1,2} = + \int_{1}^{2} p_{\text{exterior}} dV = + \int_{1}^{2} p dV$$
 (IV.10)

where:

is the work transfer that produces the deformation of the system, respectively modifies the sizes of the control volume. We considered that during the evolution of the system, shocks did not appear and thus we could permanently suppose that the exterior pressure p_{exterior} is equal to the inner (internal) pressure p of the control volume. For the mass unit all previous relations must be divided by the mass and so we obtain the following relations:

$$e = \frac{E}{m}, q_{1,2} = \frac{Q_{1,2}}{m}, \overline{w}_{1,2} = \frac{\overline{W}_{1,2}}{m}, u = \frac{U}{m}, w_{1,2} = \frac{W_{1,2}}{m}$$

$$q_{1,2} - \overline{w}_{1,2} = e_2 - e_1 \text{ and } q_{1,2} - w_{1,2} = u_2 - u_1$$
(IV.11)

IV.1.1. Infinitesimal Evolution

For an infinitesimal evolution of a closed thermodynamic system, the Equations of the first principle become:

$$\delta q - \delta w = du, \delta w = + p \cdot dv, \quad \delta Q - \delta W = dU, \delta W = + p \cdot dV$$
 (IV.12)

where: $v = \frac{V}{m}$ is the specific volume

IV.1.2. Open Transformation of a Closed System

The first law of Thermodynamics allows us to show that the net energy transfer $NET = (Q \square W)$ is a state function depending only on the final states although the terms of this algebraic sum are non-properties and so they depend on the path of the transformation. According to Figure IV.2, for any transformation between 1 and 2 states it yields:

$$E_{2} - E_{1} = Q_{1,a,2} - W_{1,a,2} = Q_{1,b,2} - W_{1,b,2} = \text{function}(1,2) \quad (IV.13)$$
$$W_{1,a,2} = + \int_{1a2} pdV \neq W_{1,b,2} = + \int_{1b2} pdV \implies Q_{1,a,2} \neq Q_{1,b,2} \quad (IV.14)$$

but:

IV.1.3. Closed transformation (cycle) of a closed system

The Equation of the first principle permits to demonstrate that it is imposible to build a perpetuum mobile of the first kind. For this aim let us consider a closed system which experiences a closed transformation (cycle). - see Fig. IV.3. In this case, the energy conservation Equation is:

$$m = 1 \Rightarrow \text{net} = \oint \delta q - \oint \delta w = \oint du = u_2 - u_1 = 0$$

$$m \neq 1 \Rightarrow \text{NET} = \oint \delta Q - \oint \delta W = \oint dU = U_2 - U_1 = 0$$
 (IV.15)

According to Equations (IV.15) it results that it is imposible to build a system, called perpetuum mobile of first kind, for which the net transfer energy *NET* (*net*) on a cycle can be non-zero.

A perpetuum mobile of first kind might either destroy or create the energy because NET (*net*) \neq 0. In the same time the Equations (IV.15) and (IV.16) do not allow to affirm that it is impossible to build a perpetuum mobile of second kind. Correspondingly to these Equations it results:

$$\begin{cases}
\oint \delta q = \oint \delta w \Rightarrow q_{cyclic} = w_{cyclic} \\
\oint \delta Q = \oint \delta W \Rightarrow Q_{cyclic} = W_{cyclic}
\end{cases}$$
(IV.16)

Consequently we should be tempted to set up an engine of which the efficiency would be equal to 1:

$$\eta_{engine} = \frac{W_{useful}}{Q_{input}} = \frac{W_{cyclic}}{Q_{cyclic}} = 1$$
(IV.17)

Supposing that Q_{cyclic} is the input heat with the purpose to produce useful work W_{cyclic} it is important to notice that such an engine must exchange the heat with a single external heat sink. Unfortunately the experimental truth at the macroscopic scale proves the impossibility to build such an engine. Every engine can cyclically work only by exchanging heat with at least two external heat sinks. This experimental truth susbstantiates the essence of the second principle of Thermodynamics.

IV.2 OPEN SYSTEM

An open system exchanges mass with its environment through its boundary walls. Such a system has a boundary with inlet and outlet ports for the mass transfer. Due to the mass transfer the energy conservation balance must be correlated with the mass conservation balance. This correlation allows us to know theoretically the evolution of the open system. In accordance with the two principles of conservation one can obtain the following axioms, see Fig. IV.4:

- 1. "Through any inner closed surface within an open system, the balance of the energies which cross this surface in the unit time is equal to the variation in the same time of the energy of the content surrounded by the closed surface."
- 2. "Through any inner closed surface of the open system the balance of the mass which cross this surface in the unit time is equal to the variation in the same time of the mass of the content surrounded by the closed surface."

Fig.IV.4. Inner closed surface within an open thermodynamic system

Therefore at time it yields:

• the energy balance:

$$\frac{\partial E}{\partial t} = \sum_{j} \dot{m}_{j} \cdot e_{j} - \sum_{k} \dot{m}_{k} \cdot e_{k}$$
(IV.18)

• the mass balance:

$$\frac{\partial m}{\partial t} = \sum_{j} \dot{m}_{j} - \sum_{k} \dot{m}_{k}$$
(IV.19)

where:

- e_j the total specific energy that enters by inlet port (j)
- e_k the total specific energy coming out by the outlet (k)
- E the energy of the mass m
- j number of the inlet port
- k number of the outlet port
- m the inner mass content
- $_{-}$ \dot{m}_{i} the inlet mass flow rate

- \dot{m}_k - the outlet mass flow rate

The terms e_j and e_k correspond to the average values on the cross section area of j and k ports for the parameters: pressure *p*, specific volume *v*, temperature *T*, specific internal energy *u*, velocity *c* and height *z* in the gravity field.

The flow through the open thermodynamic system can be made in two different modes:

- a) *the steady-state flow* when at any inner point all the parameters remain unchanged in time but vary from one point to the otherone,
- a) *the non steady-state flow* when all the parameters depend both on the geometric variables and on time; this regime characterizes the beginning and the end of the processes within the open system.

For the case (a) the terms:

$$\frac{\partial E}{\partial t} = 0, \quad \frac{\partial m}{\partial t} = 0$$
 (IV.20)

and thus it yields:

- the energy balance:

$$\sum_{j} \dot{m}_{j} \cdot e_{j} = \sum_{k} \dot{m}_{k} \cdot e_{k}$$
(IV.21)

- the mass balance:

$$\sum_{j} \dot{m}_{j} = \sum_{k} \dot{m}_{k}$$
(IV.22)

IV.2.1. The Enthalpy as State Parameter

To understand the essence of enthalpy let us imagine the simplest open thermodynamic system, a segment of a duct. Its boundary includes the rigid, impermeable and insulated wall of the duct and the imaginary cross surfaces of the extremities of the segment. Through these imaginary surfaces the mass transfer is made. For the sake of simplicity we consider that there is a steady-state flow through the duct's segment. From the mass conservation Equation we obtain:

$$\dot{m}_{inlet} = \dot{m}_{outlet}$$
 (IV.23)

From the energy conservation Equation it results:

$$e_{inlet} = e_{outlet}$$
 (IV.24)

The total specific energy e of the mass unit which flows through the open system consists of four terms:

$$e = u + e_{kinetic} + e_{gravity} + w_d$$
 (IV.25)

where:

- u -the specific internal energy
- e_{kinetic} -the specific kinetic energy
- e_{gravity} -the specific gravity energy
- W_d -the specific flow work

The specific flow work w_d is the necessary work either to introduce into the system or to pull out of the system the mass unit, see Fig. IV.5.

The specific flow work w_d is the necessary work either to introduce into the system or to pull out of the system the mass unit, see Fig. IV.5.

The specific flow work w_d is a product of two state parameters (*pv*) and consequently is a state function itself:

$$w_d = p \cdot v =$$
function of state (IV.26)

Therefore for any cross section A, the total specific energy e is:

$$\mathbf{e} = (\mathbf{u} + \mathbf{p} \cdot \mathbf{v}) + \frac{\mathbf{c}^2}{2} + \mathbf{g} \cdot \mathbf{Z} = \text{const.}$$
(IV.27)

By definition the sum (u + pv) as a new state function was called specific enthalpy:

$$h = u + p v \tag{IV.28}$$

and so:

$$e = h + \frac{c^2}{2} + g \cdot Z \tag{IV.29}$$

The physical meaning of this new state parameter is obtained by comparison of the total specific energy of the mass unit for a closed moving system and the total specific energy of the same mass unit which flows through an open system:

$$e_{\text{closed system}} = u + \frac{c^2}{2} + g \cdot Z$$
 (IV.30)

$$e_{\text{open system}} = h + \frac{c^2}{2} + g \cdot Z$$
 (IV.31)

For a closed system the term u signifies the specific internal energy that reflects by its variation the interactions of the closed system by heat transfer (q) and deformation work transfer (w). For an open system the term h represents the specific

enthalpy and has the meaning of the specific internal energy term which participates in the interactions of the open system by heat transfer (q) and engine work transfer (w_e). By engine work transfer we understand the work transfer by intermediary of a shaft and thus sometimes it is named shaft work. Since besides the enthalpy h also the terms e_{kinetic} and e_{gravity} participate in the engine work transfer the entity of local stagnation enthalpy was introduced as:

$$h^* = h + e_{kinetic}$$
(IV.32)

In 1966 Kevin proposed an engineering generalization of the enthalpy concept under the label of methalpy:

$$h^{0} = h + e_{kinetic} + e_{gravity}$$
(IV.33)

which means "*beyond enthalpy*" or "*transcending enthalpy*" (the Greek word "*meta*" is the equivalent to the word "*beyond*").

IV.2.2. The engine Work Transfer

Figure IV.6 shows the scheme of an open thermodynamic system having:

- one inlet port for mass flow
- one outlet port for mass flow
- a shaft for engine work transfer

Between the inlet port and outlet ports, the mass, which flows through the open system simultaneously, exchanges heat (with the external heat sinks) and work (by the intermediary of the shaft).

For the open system shown in the previous Figure, let consider a steady-state flow. As a result, the local parameter values are constant in time. We additionally consider the flow through the open system as being reversible. In other words during the flow the friction does not appear as an irreversible cause. Consequently for the mass unit seen as a moving closed thermodynamic system crossing the open system, the heat exchanged with its environment is just the quantity (q) exchanged

by the open system with the external heat sinks, for every mass unit which flows along the system. At the same time the quantity w_e is the engine work transfer corresponding to the same mass unit. For the mass unit, the energy conservation principle can be written in two different manners:

m = 1kg as moving closed system:

$$q_{1,2} = (u_2 - u_1) + \int_{1}^{2} p dv$$
 (IV.34)

m = 1kg flowing through the open thermodynamic system:

$$q_{1,2} - w_{e_{1,2}} = (h_2 - h_1) + \frac{c_2^2 - c_1^2}{2} + g(z_2 - z_1) =$$

$$= (u_2 - u_1) + \int_1^2 d(pv) + \frac{c_2^2 - c_1^2}{2} + g(z_2 - z_1) =$$

$$= (u_2 - u_1) + \int_1^2 pdv + \int_1^2 vdp + \frac{c_2^2 - c_1^2}{2} + g(z_2 - z_1)$$
(IV.35)

By replacing the reversible heat transfer (q) from Equation (IV.34) into Equation (IV.35) we obtain the relation of the steady-state specific engine work transfer for an open system through which a working fluid flows reversibly (without friction):

$$w_e = \int dw_e = -\int v dp - \int c dc - \int g dz$$
 (IV.36)

The flow with friction can be known by experiment. Usually the real engine work transfer ($w_{e,real}$) is estimated by amplifying the reversible engine work transfer (w_e) by a correction factor obtained by experiences. For instance:

a) If the open system produces useful engine work:

$$\eta_{i} = \frac{W_{e,real}}{W_{e}} < 1 \Longrightarrow W_{e,real} = \eta_{i} W_{e}$$
(IV.37)

b) If the open system consumes engine work:

$$\eta_{i} = \frac{w_{e}}{w_{e,real}} < 1 \Longrightarrow w_{e,real} = \frac{1}{\eta_{i}} w_{e}$$
(IV.38)

The Equation of the reversible specific engine work can be used for any fluid, liquid or gas. For gases the term $\int g dZ$ can be neglected but not for liquids. If over

the cross flow section area of the inlet and outlet ports the velocities are small and roughly equal then the term $(\int cdc)can$ be neglected. If we consider an engine as a closed thermodynamic system then the specific cyclic engine work transfer becomes:

$$w_{e,cyclic} = -\oint dw_e = -\oint vdp - \oint cdc - \oint gdZ = -\oint vdp \qquad (IV.39)$$

For the reversible flow (without friction) of gases with initial and final roughly equal speed values, the specific engine work transfer is:

$$w_e = -\int v dp \tag{IV.40}$$

The engine power for the steady-state regime is a product of the specific engine work transfer and the mass flow:

$$P_{e} = \dot{m}w_{e} = -\dot{m}\left(\int vdp - \int cdc - \int gdz\right) = -\int \dot{V}dp - \dot{m}\int cdc - \dot{m}\int gdz \qquad (IV.41)$$

where $\dot{V}[m^{3}/kg]$ is the volumetric flow rate.

V. THE IDEAL GAS

Before the second principle of Thermodynamics we shall introduce the concept of the ideal gas as an example to define some important thermodynamic ideas as the entropy and the average thermodynamic temperature of a non-adiabatic process. An ideal gas is an abstraction. Nevertheless it is a very useful one. For instance some real gases can be good enough described by the laws of the ideal gas when they flow through engines (Otto engine, Diesel engine, etc.).

The ideal gas has some important properties, which in fact are simplifying hypotheses regarding the microscopic structure of the real gases. The main properties are: the molecules are material points (they have mass but no volume), between molecules there are no interactions by forces such as attraction or repulsion; only perfect elastic collisions and momentum transfer makes the interactions between molecules.

These two main properties involve the auxiliary properties: due to the absence of the interactions by forces, the ideal gas is inviscid, the heat capacities of the ideal gas are constant, the internal energy of an ideal gas is a function only of the temperature.

V.1. THE SIMPLE LAWS OF THE IDEAL GAS

The simple laws of the ideal gas have both a theoretical and an experimental statement. They reflect the main dependencies between the state parameters for simple open transformations. The old mathematical forms of the state equations for the simple open transformations were defined on the basis of the thermodynamic coefficient method that imposes a linear proportionality between the variable state parameters. The actual mathematical forms replace the thermodynamic coefficients of linear proportionality by the corespondent relations obtained on the basis of the basis of the fundamental state equation of the ideal gas.

V.1.1. Boyle - Mariotte law

This law describes the process at constant temperature - see Fig. V.1.

 $- \underline{\text{the old state equations}}: T = \text{const.} \stackrel{\text{m=const.}}{\Rightarrow} V_2 = V_1 [1 - \chi (p_2 - p_1)] \quad (V.1)$ where: $\chi [\text{Pa}^{-1}]$ is the thermodynamic coefficient of isothermal compression: $\chi = -\frac{1}{V_1} \left(\frac{\partial V}{\partial p}\right)_T$

V.1.2. Gay - Lussac law

Т

This law characterizes the process at constant pressure - see Fig.V.2.

where

- $\alpha[K^{-1}]$ is the thermodynamic coefficient of volumetric dilatation at constant pressure: $\alpha = \frac{1}{V_1} \left(\frac{\partial V}{\partial T}\right)_n$

Supposing for any process at constant pressure that $T_1 = T_0 = 273.15$ K then the coefficient of volumetric dilatation becomes: $\alpha = \alpha_0 = \frac{1}{T_0} = \frac{1}{273.15}$ K⁻¹ = const.

$$- \underline{the} \quad \underline{actual} \quad \underline{state} \quad \underline{equations}; \quad p = \operatorname{const.}^{m=\operatorname{const.}} \stackrel{W}{\Rightarrow} \frac{V}{T} = \operatorname{const.} \Rightarrow$$
$$\frac{V}{T} = \frac{1}{\rho T} = \operatorname{const.}(V.6)$$
$$dp = 0 \qquad \qquad \stackrel{m=\operatorname{const.}}{\Rightarrow} \frac{dV}{V} = \frac{dT}{T} \quad \Rightarrow \frac{dv}{v} = -\frac{d\rho}{\rho} = \frac{dT}{T} \qquad (V.7)$$

V.1.3. Charles law

This law depicts the process at constant volume - see Fig.V.3.

Fig.V.3. The diagrams of the process at constant volume

<u>the old state equations</u>: $V = const. \implies p_2 = p_1[1 + \beta(T_2 - T_1)]$ (V.8)

 $\blacksquare \qquad \qquad \blacksquare \texttt{ist} the thermodynamic coefficient of thermal elasticity: } \beta = \frac{1}{n} \left(\frac{\partial p}{\partial T} \right)_{T}$ where:

Imposing for all processes at constant volume that $T_1 = T_0 = 273.15$ K then the coefficient of thermal elasticity is: $\beta = \beta_0 = \frac{1}{T_0} = \frac{1}{273.15} \text{ K}^{-1} = \text{const.} = \alpha_0$

$$- \underline{the \ actual \ state \ equations}: V(v) = const. \xrightarrow{m=const.} \frac{p}{T} = const. \quad (V.10)$$
$$dV(dv) = 0 \qquad \xrightarrow{m=const.} \frac{dp}{p} = \frac{dT}{T} \qquad (V.11)$$

p

The real gases comply with the simple laws of the ideal gas when the sum of the volumes of their own molecules is negligible by comparison with the whole volume and consequently due to the great distances between molecules the interaction by forces can be neglected. Nevertheless a real gas is always viscous, has non-constant heat capacities and its internal energy depends on the temperature and the volume. The real gases, which satisfy the simple laws of the ideal gas, are called to be in the *perfect state*.

V.1.4. Joule's law

"The internal energy of an ideal gas is only a function of the temperature"

This law has an experimental statement and it was the produce of the work of Gay - Lussac and Joule.

V.1.5. Avogadro's law

At the same pressure and the same temperature, the same volume of any ideal gas contains the same number of molecules."

The mass of the ideal gas contained in this volume is proportional to the molar mass, written as M [kg/kmol]. A kmol contain the same number of molecules for all ideal gases. This number of molecules is known as Avogadro's number:

 $N_A = 6.023 \cdot 10^{26}$ molecules / kmol

V.1.6. The reciprocal Avogadro's law

"The volume of the mass quantity equal to the molar mass, at the same pressure and the same temperature is the same for all ideal gases"

This volume is named molar volume, written as $V_{\mbox{\scriptsize M}}.$ For the normal physical conditions defined by:

 $p_0 = 1.013251$ bar = 101,325.1 Pa [N/m²], $T_0 = 273.15$ K [0⁰C]

the normal molar volume is: V_{M0} = 22.414 m_N^3 / kmol [normal cubic meter per kmol]

Some gauges use the normal cubic meter, $[1\,m_N^3]$, as the unit to measure the flow of gaseous fluid. Note that $1\,m_N^3$ in different conditions from the normal physical conditions is a mass unit because $1\,m_N^3$ corresponds to a mass quantity equal to the ratio between the molar mass and the normal molar volume: $1\,m_N^3\,\Rightarrow\,m$

 $_{m_N^3} = M / V_{M0} = M / 22.414 [kg / m_N^3]$

V.2. THE FUNDAMENTAL STATE EQUATION OF THE IDEAL GAS

Let us consider a cubic control volume of size *a* (volume $V = a^3$). Let us suppose that the molecules of the ideal gas move permanently and chaotically within the control volume. Due to this motion and due to the very large number, *N*, of molecules we can admit that at any time (N/3) molecules move simultaneously along the each side. Every molecule of mass *C*exchanges with the surface of area a^2 the following momentum transfer:

$$I = \mu c_{j} - (-\mu c_{j}) = 2\mu c_{j}$$
 (V.12)

Between two consecutive collisions, the elapsed time is:

$$t = 2a/c_{1}$$
 (V.13)

The frequency of the collisions will be:

$$f = 1/t = c_j/2a$$
 (V.14)

Every collision is supposed to be perfect, without shocks. The force, which appears at every collision j, is:

$$F_j = I \cdot f = \frac{2\mu}{a} \cdot \frac{c_j^2}{2}$$
(V.15)

The total force that acts upon the surface a^2 is:

$$F = \sum_{j} F_{j} = \sum_{j} \frac{2\mu}{a} \cdot \frac{c_{j}^{2}}{2} = \frac{N}{3} \cdot \overline{F} = \frac{2}{3} \cdot \frac{N\mu}{a} \cdot \frac{\overline{c}^{2}}{2}$$
(V.16)

where \overline{F} and \overline{c} are the average values of F_i and c_i .

The pressure, which appears due to the force, \overline{F} will be:

$$p = \frac{\overline{F}}{a^2} = \frac{2}{3} \cdot \frac{N\mu}{a^3} \cdot \frac{\overline{c}^2}{2} \Rightarrow \frac{\rho = \frac{N\mu}{a^3}}{V = a^3} \Rightarrow \overline{c} = \sqrt{\frac{3p}{\rho}}$$
(V.16)

The average kinetic energy of molecules is:

$$\mathbf{e}_{\text{kinetic}} = \overline{\mathbf{c}}^2 / 2 \tag{V.17}$$

Therefore it yields:

$$p \cdot V = \frac{2}{3} \cdot N\mu \cdot e_{kinetic} = \frac{2}{3} \cdot m \cdot e_{kinetic}$$
 (V.18)

Equation (V.18) is in fact the fundamental state equation of the ideal gas. Unfortunately in this equation the term $e_{kinetic}$ cannot be known either theoretically or experimentally. For this reason it is necessary to introduce a new, subjective, parameter at the macroscopic scale that should be equivalent to the average kinetic energy of the molecules. This new state parameter is equal to zero when $e_{kinetic}$ is equal to zero. In this way we can define its absolute value. This new parameter is the absolute temperature or the thermodynamic temperature, written as T. For the real gases the essence of the absolute temperature is the same as for the ideal gas, respectively it "measures" the average energy of the molecules during their thermal motion. Supposing for the ideal gas that the dependence between $e_{kinetic}$ and T is linear, we can write:

$$pV_M = MRT = R_MT$$
 (Mendeleev's equation) (V.20)

where:

$m = N\mu$	is the mass of the ideal gas [kg],
$R = R_M / M$	is the characteristic constant of the ideal gas [J/kg K],
Т	is the absolute temperature [K],
М	<i>is the molar mass</i> [kg/kmol],
R _M	is the universal constant of the ideal gas [J/kmol K].

The universal constant of the ideal gas was experimentally appreciated as being the ratio of the deformation work transfer to the temperature variation during the process at constant pressure. Adopting for the absolute temperature a measuring unit [1 Kelvin degree = 1 K] equal to that corresponding to the empirical scale of Celsius [1 K = 1° C] then the universal constant of the ideal gas is:

$$p=const. \Rightarrow R_{M} = \frac{p\left(\frac{N}{m^{2}}\right) \cdot \Delta V_{M}\left(\frac{m^{3}}{kmol}\right)}{\Delta T(K)} \cong 8,314.5 \left(\frac{J}{kmol \cdot K}\right) (V.21)$$

In the absolute temperature scale $[1 \text{ K} = 1^{\circ}\text{C}]$ the zero point of the empirical scale of Celsius $[0^{\circ}\text{C}]$ corresponds to the value of 273.15 K. This value was calculated on the basis of the ideal gas concept and of the standard state defined by:

$$p_0 = 1,01325.1 Pa$$
 (760 mm Hg) $t_0 = 0^0 C$ and $V_{M0} = 22.414 m_N^3 / kmol$:

Therefore it yields:

$$T_{0} = \frac{p_{0} \cdot V_{M0}}{R_{M}} = \frac{1,01325.1 \left(\frac{N}{m^{2}}\right) \cdot 22.414 \left(\frac{m_{N}^{3}}{kmol}\right)}{8314.5 \left(\frac{J}{kmol \cdot K}\right)} = 273.15 \,(\text{K}) \quad (\text{V.22})$$

The fundamental state equation can be obtained also on the basis of the simple laws of ideal gas. For this aim let us suppose, for a mass m, a certain process between the normal physical state (p_0 , V_0 , T_0) and a different state (p, V, T), see Fig. V.4. This process can be replaced by any succession of two simple processes. Independently of the chosen path we obtain the so-called equation state of the general transformation:

$$\frac{pV}{T} = \frac{p_0 V_0}{T_0} = \text{const.} = \overline{R}$$
(V.23)

The constant \overline{R} may be evaluated by imposing the standard mass. We can impose either the mass unit [1kg] or the quantity unit [1kmol]. Thus it yields:

$$m = 1 \text{ kg} \Rightarrow \overline{R} = R = \frac{1.01325.1 \left(\frac{N}{m^2}\right)}{273.15 (K)} v_0 \left(\frac{m^3}{\text{ kg}}\right) = 37.8 v_0 \left(\frac{J}{\text{ kg K}}\right)$$

$$m = M \text{ kg} \Rightarrow \overline{R} = R_M = \frac{101,325.1 \left(\frac{N}{m^2}\right) \cdot 22.414 \left(\frac{m^3}{\text{kmol}}\right)}{273.15(\text{K})} = 8,314.5 \left(\frac{J}{\text{kmol} \cdot \text{K}}\right)$$

V.3. THE VARIATION OF INTERNAL ENERGY AND ENTHALPY

For an ideal gas the infinitesimal or finite variations of the specific internal energy and of the specific enthalpy are the same for any process which has the same ending states. The demonstration of this assertion is very simple. Let us suppose a certain transformation whose plot is shown in Fig. V.5. Independently of the path that links the states 1 and 2, the variations of u and h are the same:

$$\Delta h = \int_{1}^{2} dh = h_{2} - h_{1} \text{ and } \Delta u = \int_{1}^{2} du = u_{2} - u_{1}$$
 (V.24)

From the multitude of transformations, which pass through the states 1 and 2, we choose the simplest and most suitable path, which allows us to obtain the general relations of the variation of u and h.

Thus, for we choose the way 1-b-2 consisting of processes 1-b at constant temperature and b-2 at constant volume. For the convenient path is the succession of 1-a at constant temperature and a-2 at constant pressure. As a result it yields:

$$\Delta u = (u_2 - u_b)_v + (u_b - u_1)_T = (q_{b,2})_v + 0 = c_v (T_2 - T_1) \quad (V.25)$$

$$\Delta h = (h_2 - h_a)_p + (h_a - h_1)_T = (q_{a,2})_p + 0 = c_p(T_2 - T_1)$$
(V.26)

and so, for any infinitesimal transformation it yields:

$$du = c_v dT$$
 and $dh = c_p dT$ (V.27)

where:

*c*_v and *c*_p [J/kg K] are the heat capacities at constant volume and respectively at constant pressure.

V.4. ROBERT MAYER RELATION

According to the first principle of Thermodynamics and the fundamental state equation of the ideal gas it yields:

m = 1 kg
$$du + pdv = dh - vdp = \delta q$$

$$\Rightarrow (c_p - c_v)dT = d(pv) = RdT$$
(V.27)

$$\mathbf{m} = \mathbf{M} \, \mathbf{kg}$$
 $du_{\mathbf{M}} + p dV_{\mathbf{M}} = dh_{\mathbf{M}} - V_{\mathbf{M}} dp = \delta q_{\mathbf{M}}$

$$\Rightarrow (C_{M,p} - C_{M,v}) dT = d(pV_M) = R_M dT$$
 (V.28)

and so, the Robert-Mayer relations are:

$$R = (c_{p}, c_{v}) [J/kg K] \text{ and } R_{M} = (C_{M,p}, C_{M,v}) [J/kmol K]$$
(V.29)

VI. THE SECOND PRINCIPLE

In essence, the second principle of Thermodynamics postulates the natural direction of the energy propagation. As a result, this principle deals with entities and criteria that reflect the quality during the energy transfers.

The specific thermodynamic entities related to second law are:

- entropy,
- absolute temperature,
- exergy and anergy.

The thermodynamic criteria of the second principle are:

- lost exergy and second law efficiency,
- minimum rate of entropy generation,
- maximum output or minimum input power for a minimum time of life.

Before to go thoroughly into the second principle of Thermodynamics let us turn to good account the knowledge related to the first principle and the concept of the ideal gas.

Every thermal machine operates on the basis of a closed transformation (cycle). The equation of the first principle is applied to define their coefficient of performance (COP) as a quantitative dimensionless parameter which measures the potency of the equivalence between the heat and the work transfer on the cyclic evolution. Thus for a reversible engine it reads:

$$\oint \delta Q = Q_{\text{cyclic}} = \oint \delta W = + \oint p dV = \oint \delta W_e = -\oint V dp = W_{\text{cyclic}}$$
(58)

In accord to the experimental reality the cyclic heat consists of two components, one component is positive respectively exhausted from the hot external heat reservoir and the other one is negative respectively rejected out of cycle to the cold external heat reservoir:

$$Q_{\text{cyclic}} = Q_{\text{cyclic}}^{\text{input}} - \left| Q_{\text{cyclic}}^{\text{output}} \right| = W_{\text{cyclic}}$$
(59)

The first law efficiency (COP) becomes:

$$COP = \eta_e = \frac{\text{cyclic output work}}{\text{cyclic input heat}} = \frac{W_{\text{cyclic}}}{Q_{\text{cyclic}}^{\text{input}}} = 1 - \frac{\left|Q_{\text{cyclic}}^{\text{output}}\right|}{Q_{\text{cyclic}}^{\text{input}}} < 1$$
(60)

But the equations (58, 59, and 60) do not permit to know why it is impossible to set a perpetual mobile of second kind, respectively an engine with the coefficient of performance equal to the unit.

The cyclic work transfer can be graphically visualized in the diagram pressure - volume. Unfortunately this diagram cannot say us why the coefficient of performance of an engine is lower than the unit. This diagram does not answer at this question because it does not emphasize the heat transfer. For this reason we need a diagram in which we can visualize the heat transfer. Such a diagram can be defined on the basis of the first principle of Thermodynamics and the concept of the ideal gas.

Accordingly to the first principle, for the mass unit we have:

$$\delta q = du + pdv = dh - vdp \tag{61}$$

For the ideal gas, this equation becomes:

$$\delta q = c_v dT + p dv = c_p dT - v dp$$
(62)

because:

 $du_{ideal gas} = c_v dT$ where $c_v = const$. $dh_{ideal gas} = c_p dT$ where $c_p = const$.

Let us try to obtain for the infinitesimal heat transfer a similar equation as there is for the infinitesimal work transfer:

$$\delta w = +pdv$$
 and $\delta w_e = -vdp$

For this aim it is necessarily to transform the inexact differential \Box_q , depending on the path, into an exact differential by multiplication of equation (62) with an integrating factor that is in fact is a new state function.

Thus, it yields:

$$dN = f \cdot dq \tag{63}$$

where:

dN is the exact differential of the new state function;

- f is the integrating factor, also a state function.

Therefore it results:

$$dq = f \, dN \tag{64}$$

similarly as we have for

The state functions **N** and **f** give us the possibility to set up the necessary diagram in which we can graphically visualize the reversible heat transfer by the intermediary of the equation:

$$q = \int f^{-1} dN \tag{65}$$

On the basis of the first law of Thermodynamics and the concept of the ideal gas we can rigorously define the integrating factor \mathbf{f} and consequently the new state function \mathbf{N} .

Therefore we write:

$$dN = f \cdot \delta q = f \cdot c_v \cdot dT + f \cdot p \cdot dv = f \cdot c_p \cdot dT - f \cdot v \cdot dp$$
(66)

The integrating factor **f** can be determined by using the mathematical properties of exact differentials such as the equality of the second mixed derivatives. As a state function, the new state parameter **N** is depending on the other two state parameters. Because the heat transfer firstly depends on the temperature, we prefer to adopt:

either
$$N = N(T, v)$$
 or $N = N(T, p)$ (67)

It yields:

either
$$dN = \left(\frac{\partial N}{\partial T}\right)_V dT + \left(\frac{\partial N}{\partial v}\right)_T dv$$
 or $dN = \left(\frac{\partial N}{\partial T}\right)_p dT + \left(\frac{\partial N}{\partial p}\right)_T dp$ (68)

By the comparison of the equations (66) and (68) it results:

$$\left(\frac{\partial N}{\partial v}\right)_{T} = fp; \left(\frac{\partial N}{\partial p}\right)_{T} = -fv; \left(\frac{\partial N}{\partial T}\right)_{v} = fc_{v}; \left(\frac{\partial N}{\partial T}\right)_{p} = fc_{p}$$
(69)

At its turn the state function **f** depends on the other two state parameters. For the sake of the simplicity we choose the separating variable method in order to obtain the following simplified equation:

$$f = f(T,N) = f_T(T) \cdot f_N(N)$$
(70)

where:

- f_T(T) is a function depending only on temperature;
- f_N(N) is a function depending only on the new state function **N**.

As a result it yields:

$$\frac{1}{f_N(N)}dN = f_T(T)\delta q = d[s(T, v)] = d[s(T, p)] = ds$$
(71)

In this way we replace the function \mathbf{N} with another new state function \mathbf{s} without altering our aim. Thus it yields:

$$ds = f_T \cdot c_v \cdot dT + f_T \cdot p \cdot dv = f_T \cdot c_p \cdot dT - f_T \cdot v \cdot dp$$
(72)

In the same way used for the state function **N**, we obtain:

$$\left(\frac{\partial s}{\partial v}\right)_{T} = f_{T}p; \left(\frac{\partial s}{\partial p}\right)_{T} = -f_{T}v; \left(\frac{\partial s}{\partial T}\right)_{v} = f_{T}c_{v}; \left(\frac{\partial s}{\partial T}\right)_{p} = f_{T}c_{p}$$
(73)

The second mixed derivatives of the new function **s** will be:

$$s_{T,v}'' = \left(\frac{\partial}{\partial T} \left(\frac{\partial s}{\partial v}\right)_{T}\right)_{v} = \left(\frac{\partial (f_{T}p)}{\partial T}\right)_{v} = p\frac{df_{T}}{dT} + f_{T} \left(\frac{\partial p}{\partial T}\right)_{v}$$
(74)

$$s_{v,T}'' = \left(\frac{\partial}{\partial v} \left(\frac{\partial s}{\partial T}\right)_{v}\right)_{T} = \left(\frac{\partial (f_{T}c_{v})}{\partial v}\right)_{T} = 0$$
(75)

$$s_{T,p}'' = \left(\frac{\partial}{\partial T} \left(\frac{\partial s}{\partial p}\right)_T\right)_p = -\left(\frac{\partial (f_T v)}{\partial T}\right)_p = -v \frac{df_T}{dT} - f_T \left(\frac{\partial v}{\partial T}\right)_p$$
(76)

$$s_{p,T}'' = \left(\frac{\partial}{\partial p} \left(\frac{\partial s}{\partial T}\right)_{p}\right)_{T} = \left(\frac{\partial \left(f_{T}c_{p}\right)}{\partial p}\right)_{T} = 0$$
(77)

$$s''_{T,v} = s''_{v,T}$$
 and $s''_{T,p} = s''_{p,T}$ (78)

The partial derivatives of \mathbf{p} and \mathbf{v} may be known choosing once more the ideal gas as the theoretical standard substance:

$$\mathbf{p} \cdot \mathbf{v} = \mathbf{R} \cdot \mathbf{T} \Longrightarrow \left(\frac{\partial \mathbf{p}}{\partial \mathbf{T}}\right)_{\mathbf{v}} = \frac{\mathbf{R}}{\mathbf{v}} \text{ and } \left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}}\right)_{\mathbf{p}} = \frac{\mathbf{R}}{\mathbf{p}}$$
 (79)

We finally obtain:

$$d[In(f_{T})] + d[In(T)] = 0$$
(80)

And thus:

$$ln (f_T \cdot T) = ln A \Longrightarrow f_T = \frac{A}{T}$$
 (81)

Since the value of constant A can be arbitrarily imposed, A = 1, it yields:

$$f_{\rm T} = \frac{1}{\rm T} \tag{82}$$

The sought diagram necessary to emphasize the heat transfer can be now construct with the help of the state parameters T and s. The new state function s is called the specific entropy and it is defined by the equation:

$$ds = \frac{\delta q}{T}$$
(83)

Since the heat transfer is an extensive non-parameter (depending on the mass) it results that the entropy at its turn is also an extensive state parameter respectively depends on the mass and thus:

dS = m·ds =
$$m\frac{\delta q}{T} = \frac{\delta Q}{T}$$
 (84)

In the Fig.7 is shown the diagram T - s and the equivalent heat transfer for the reversible open and closed transformations.

Fig. 7. The graphical statement of the reversible heat transfer in the diagram temperature - entropy

The second principle of Thermodynamics emphasizes by different equivalent sentences, the natural direction of the real energetic transfers. This direction is unique because any energy transfer needs a finite potential difference depending as value on the energy's type. Sometimes this value may be neglected by comparison with the absolute value but never equal or tending to zero (i.e. infinitesimal). We subjectively defined the energy potential so that the energy transfer is made from the higher energetic potential to the lower energetic potential. In this way the uniqueness

of the direction of the real energetic evolutions is caused by the uniqueness of the energetic potential differences that impose a unique direction to the energy transfer. The second principle of Thermodynamics may be defined by one of the following equivalent sentences:

R. Clausius:

• " The heat cannot itself transfers from the lower temperature to the higher temperature"

L. Sadi Carnot:

- " It is impossible to set an engine that continuously supplies work exchanging heat only with a single external heat sink".
- "A thermal engine cannot continuously supplies work without exchanging heat with two heat external heat sinks at different temperatures".

W. Thomson (Lord Kelvin):

• "It is impossible by means of inanimate material agency to derive mechanical effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects"

with the following footnote:

• "If this axiom be denied for all temperatures, it would have to be admitted that a self-acting machine might be set to work and produce mechanical effects by cooling the sea or earth, with no limit but the total loss of heat from the earth or sea, or, in reality, from the whole material world".

M. Planck:

• "It is impossible to construct an engine which will work in a complete cycle, and produce no effect except the raising of a weight and the cooling of a heat reservoir".

C. Caratheodory:

- **axiom I:** "The work is the same in all adiabatic processes that take a system from a given initial state to a given final state".
- **axiom II:** "In the immediate neighborhood of every state of a system, there are other states that cannot be reached from the first by any adiabatic process".

Excepting the definition of R. Clausius, the all others postulate that it is impossible to set up a so-called perpetual mobile of second kind. We emphasize that every definition is equivalent to the others and allows to deduce the all consequences

regarding the work of the thermal machines such as the fact that cyclic heat transfer (Q_{cyclic}) contains two components, one is positive (i.e. received) and the other is negative (i.e. rejected out).

The second principle of Thermodynamics allows us to study the quality of the energetic phenomena while the first principle of Thermodynamics reflects the quantity of the same phenomenon. The following aspects reflect the quality:

- It is impossible to set a natural energy transfer from the lower energetic potential to the higher energetic potential. Consequently we can distinguish the real and non-real energetic phenomena;
- It is impossible to build a perpetual mobile of second kind, that is an engine that cyclically runs and exchanges heat with a single external heat sink. As a result we can define the ideal cycles with the maximum - maximorum coefficient of performance.
- It is impossible continuously to turn the all consumed heat into the work. This experimental reality compels us to classify the energies in two fundamental types, namely the ordered and disordered energies.
- It is possible to distinguish the mutual capacity of the energies to transform each other during the continuous work of the thermal machines. This mutual transformation potential is defined by the entities of exergy and anergy.
- It is possible to estimate the grade of irreversibility by means of the lost exergy and the second law efficiency.

The diagram T - s for the ideal gas

The simplest transformations of the ideal gas can be plotted in this diagram on the basis of the following state equations:

– The transformation at constant temperature:

 $dT = 0 \implies T = const. \implies$ an horizontal line

- The transformation at constant pressure:

$$dp = 0 \Longrightarrow ds = c_{p} \cdot \frac{dT}{T} - \frac{v}{T} \cdot dp = c_{p} \cdot \frac{dT}{T} \text{ where } c_{p} = \text{const.}$$
$$\int_{T_{0}} \frac{dT}{T} = \int_{s_{0}} \frac{ds}{c_{p}} \Longrightarrow T = T_{0} \cdot exp\left(\frac{s - s_{0}}{c_{p}}\right) \text{ with the slope } \left(\frac{\partial T}{\partial s}\right)_{p} = \frac{T}{c_{p}}$$

- The transformation at constant volume:

$$d\mathbf{v} = 0 \Longrightarrow d\mathbf{s} = \mathbf{c}_{\mathbf{v}} \cdot \frac{dT}{T} + \frac{\mathbf{p}}{T} \cdot d\mathbf{v} = \mathbf{c}_{\mathbf{v}} \cdot \frac{dT}{T} \text{ where } \mathbf{c}_{\mathbf{v}} = \text{const.}$$
$$\int_{T_0} \frac{dT}{T} = \int_{s_0} \frac{ds}{\mathbf{c}_{\mathbf{v}}} \Longrightarrow T = T_0 \cdot exp\left(\frac{s - s_0}{c_{\mathbf{v}}}\right) \text{ with the slope}\left(\frac{\partial T}{\partial s}\right)_{\mathbf{v}} = \frac{T}{c_{\mathbf{v}}} > \left(\frac{\partial T}{\partial s}\right)_{\mathbf{p}}$$

- The adiabatic transformation:

$$\delta q = 0 \Rightarrow ds = \frac{\delta q}{T} = 0 \Rightarrow s = const. \Rightarrow a vertical line$$

The reversible transformations of ideal gas in the diagram T - s

The entropy variation of the ideal gas

For the reversible transformations it calculates:

$$ds = \frac{\delta q}{T} = \frac{du}{T} + \frac{p}{T} \cdot dv = \frac{dh}{T} - \frac{v}{T} \cdot dp$$
$$du = c_v \cdot dT; \ dh = c_p \cdot dT; \ p \cdot v = R \cdot T; \ c_v = \frac{R}{k-1}; \ c_p = \frac{k \cdot R}{k-1}$$
$$ds = c_v \cdot \frac{dT}{T} + R \cdot \frac{dv}{v} = c_p \cdot \frac{dT}{T} - R \cdot \frac{dp}{p} = c_v \cdot \frac{dp}{p} + c_p \cdot \frac{dv}{v}$$
$$\Delta s = c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1} = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} = c_v \ln \frac{p_2}{p_1} + c_p \ln \frac{v_2}{v_1}$$

The mean thermodynamic temperature of a non – adiabatic process

Let suppose a non-adiabatic process in the diagram T - s. By definition the mean thermodynamic temperature of the non-adiabatic process, 1-2, is:

From the physical point of view, the mean thermodynamic temperature is the temperature of the equivalent isothermal transformation, 1^*-2^* , during the heat transfer, q_{1-2} , and the entropy variation, $\Delta s = (s_2 - s_1)$, have the same values as during the non-adiabatic process, 1-2. In this way the heat transfer may be calculated as:

$$\mathbf{q}_{1-2} = \mathbf{T}_{\mathrm{mq}} \cdot \left(\mathbf{s}_2 - \mathbf{s}_1\right)$$

In the Figure an engine cycle is plotted. As we know the heat transfer spontaneously is self-generated from the higher temperature to the lower temperature.

Every engine cycle contains two half-cycles, the one, A-C-B, receives the heat:

$$q_{A-C-B} = \int_{A-C-B} T \cdot ds = T_{mq}^{A-C-B} \cdot (s_2 - s_1) > 0$$

and the other one, B-D-A, rejects the heat:

$$q_{B-D-A} = \int_{B-D-A} T \cdot ds = T_{mq}^{B-D-A} \cdot (s_1 - s_2) < 0$$

During the half-cycle A-C-B the heat transfer, q_{A-C-B} , naturally could be made only from the higher temperature T_h to the mean thermodynamic temperature $T_{mq}^{A-C-B} < T_h$. On the half-cycle B-D-A the heat transfer, q_{B-D-A} spontaneously might be generated itself only from the mean thermodynamic temperature, T_{mq}^{B-D-A} , to the lower temperature $T_l < T_{mq}^{B-D-A}$. Since $T_{mq}^{A-C-B} > T_{mq}^{B-D-A}$ it yields that it is impossible to set a perpetual mobile of second kind.

The ideal cycles

In Figures an engine and a refrigeration cycles are schetched

For the engine cycle, 1-2-3-4-1, the coefficient of performance will be:

$$\eta_{e} = \frac{w_{cyclic}}{q_{cyclic}^{consumed}} = \frac{w_{cyclic}}{q_{1-2}} = 1 - \frac{|q_{3-4}|}{q_{1-2}}$$

In accordance with the first principle we write:

$$w_{cyclic} = \int_{1}^{2} \delta q + \int_{3}^{4} \delta q = T_{mq}^{1-2} (s_{2} - s_{1}) + T_{mq}^{3-4} (s_{4} - s_{3}) = (s_{max} - s_{min}) (T_{mq}^{1-2} - T_{mq}^{3-4})$$
$$\eta_{e} = \frac{T_{mq}^{1-2} - T_{mq}^{3-4}}{T_{mq}^{1-2}} = 1 - \frac{T_{mq}^{3-4}}{T_{mq}^{1-2}} \text{ where } s_{1} = s_{4} = s_{min}; \quad s_{2} = s_{3} = s_{max}$$

Therefore as T_{mq}^{1-2} increases and T_{mq}^{3-4} decreases as the coefficient of performance increases. The ideal cycle is set when the two mean thermodynamic temperatures become infinitesimally different from the temperatures of the external heat sinks:

$$T_{mq}^{3-4} = T_l + dT_l \cong T_l \text{ and } T_{mq}^{1-2} = T_h - dT_h \cong T_h$$

Similarly, for the refrigeration cycle, 1-2-3-4-1, the coefficient of performance will be:

$$\varepsilon_{\rm r} = \frac{\text{refrigeration}}{\left|w_{\rm cyclic}\right|} = \frac{q_{3-4}}{\left|w_{\rm cyclic}\right|} = \frac{q_{3-4}}{\left|q_{1-2}\right| - q_{3-4}}$$

In accordance with the first principle we write:

$$\begin{split} w_{cyclic} &= \int_{1}^{2} \delta q + \int_{3}^{4} \delta q = T_{mq}^{1-2} (s_{2} - s_{1}) + T_{mq}^{3-4} (s_{4} - s_{3}) = (s_{min} - s_{max}) (T_{mq}^{1-2} - T_{mq}^{3-4}) \\ & \epsilon_{r} = \frac{T_{mq}^{3-4}}{T_{mq}^{1-2} - T_{mq}^{3-4}} \text{ where } s_{1} = s_{4} = s_{max}; \quad s_{2} = s_{3} = s_{min} \end{split}$$

Therefore as T_{mq}^{1-2} decreases and T_{mq}^{3-4} increases as the coefficient of performance increases. The ideal cycle is set when the two mean thermodynamic temperatures become infinitesimally different from the temperatures of the external heat sinks:

$$T_{mq}^{3\text{-}4}=\mathsf{T}_l-\mathsf{d}\mathsf{T}_l\cong\mathsf{T}_l \text{ and } T_{mq}^{1\text{-}2}=\mathsf{T}_h+\mathsf{d}\mathsf{T}_h\cong\mathsf{T}_h$$

In both cases, the ideal cycles are consisting of two isothermal and two adiabatic processes (in fact these are the ideal **CARNOT** cycles).

Gouy – Stodola Theorem

Prof. Dr. Eng. Gheorghe DUMITRASCU "Gheorghe ASACHI" Technical University of Iasi Mechanical and Automotive Engineering Department <u>http://www.tuiasi.ro</u> <u>http://www.mec.tuiasi.ro/indextmtfc.html</u>

LLLP ERASMUS - NANCY - 2013

Assumptions

- 1. They will be analyzed non steady-state enlarged basic open thermodynamic systems, including both the thermal system and, the external heat reservoirs controlling the heat transfers and, the environment allowing the mass transfers;
- 2. The working fluid is a mixture of different chemical species, the inlet and outlet compositions might be different because of chemical reactions that can appear during the flow through the thermal system;
- 3. The inner boundary of the flow path through the thermal system is deformable under the environmental pressure;

M: Mass of the working fluid surrounded by the operating engine inner walls at a certain operational time V: Working fluid volume defined by the operating engine inner walls at a certain operational time U: Inner operating engine working fluid energy at a certain operational time

S: Entropy of the working fluid surrounded by the operating engine inner walls at a certain operational time

Gouy – Stodola Theorem, Engines

LLLP ERASMUS - NANCY - 2013

Gouy – Stodola Theorem, Engines

Gouy – Stodola Theorem, Engines

Irreversible Lost Power

$$\dot{W}_{lost}^{irrev} = -T_0 \cdot S_{gen}^{irrev}$$

M: Mass of the working fluid surrounded by the operating engine inner walls at a certain operational time V: Working fluid volume defined by the operating engine inner walls at a certain operational time U: Inner operating engine working fluid energy at a certain operational time

S: Entropy of the working fluid surrounded by the operating engine inner walls at a certain operational time

Reversible Consumed Power

$$\begin{split} \dot{W_e}^{rev} &= \dot{Q} \left(1 - \frac{T_0}{T} \right) \\ &+ \sum_{inlet} \dot{m} \left(h^* - T_0 s \right) - \sum_{outlet} \dot{m} \left(h^* - T_0 s \right) \\ &- \frac{\partial}{\partial t} \left(U + p_e V - T_0 S \right) < 0 \end{split}$$

where

$$h^* = h + \frac{\overline{V}^2}{2} + gZ$$
 is the methalpy

Irreversible Lost Power

$$\dot{W}_{lost}^{irrev} = -T_0 \cdot S_{gen}^{irrev}$$

$$\dot{S}_{gen}^{irrev} \rightarrow 0 \quad \dot{W}_{lost}^{irrev} = -T_0 \cdot S_{gen}^{irrev} \rightarrow 0$$

$$\dot{W}_{e}^{rev} = \dot{W}_{e,\dot{Q}}^{rev} + \dot{W}_{e,flow}^{rev} + \dot{W}_{e,storage}^{rev}$$

$$\dot{W}_{e}^{rev} = \dot{W}_{e,\dot{Q}}^{rev} + \dot{W}_{e,flow}^{rev} + \dot{W}_{e,storage}^{rev}$$

•Relationship Q – W, engines, (heat exergy)

$$\dot{W}_{e,\dot{Q}}^{rev} = \dot{Q}\left(1 - \frac{T_0}{T}\right) > 0$$

•Relationship Q – W, refrigeration cycles, (heat exergy)

$$\dot{W}_{e,\dot{Q}}^{rev} = -\dot{Q}\left(\frac{T_0}{T} - 1\right) = -\frac{\dot{Q}}{T/(T_0 - T)} < 0$$

$$\dot{W}_{e}^{rev} = \dot{W}_{e,\dot{Q}}^{rev} + \dot{W}_{e,flow}^{rev} + \dot{W}_{e,storage}^{rev}$$

Relationship flow– W, (flow exergy)

$$\dot{W}_{e,\text{flow}}^{\text{rev}} = \sum_{inlet} \dot{m} \left(h^* - T_0 s \right) - \sum_{\text{outlet}} \dot{m} \left(h^* - T_0 s \right)$$

$$\dot{W_e}^{rev} = \dot{W_{e,\dot{Q}}}^{rev} + \dot{W_{e,flow}}^{rev} + \dot{W_{e,storage}}^{rev}$$

Relationship "energy storage" – W, non steady-state system operation, (storage exergy)

$$\dot{\mathbf{W}}_{e,\text{storage}}^{\text{rev}} = -\frac{\partial}{\partial t} \left(\mathbf{U} + \mathbf{p}_{e}\mathbf{V} - \mathbf{T}_{0}\mathbf{S} \right)$$

Introduction to Irreversible Cycles

Assumptions

No mass transfer:

$$\sum_{\textit{inlet}} \dot{m} \left(h + \frac{\overline{V}^2}{2} + gZ \right) - \sum_{\textit{outlet}} \dot{m} \left(h + \frac{\overline{V}^2}{2} + gZ \right) = 0 \quad \text{and} \quad -\sum_{\textit{inlet}} \dot{m} \cdot s + \sum_{\textit{outlet}} \dot{m} \cdot s = 0$$

Non deformable boundary walls:

$$p_{e}\frac{\partial V}{\partial t}=0$$

Steady state operation:

$$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = 0 \text{ and } \frac{\partial \mathbf{S}}{\partial \mathbf{t}} = 0$$

Introduction to Irreversible Closed Cycles Endo-reversible Carnot Cycle

Entropy Generation by Irreversibility

Enlarged System – including both the thermal system and the external heat reservoirs

Related to overall Irreversibility (external + internal)

$$\dot{S}_{gen}^{overall} = -\frac{\left|\dot{Q}\right|}{T} + \frac{\dot{Q}_0}{T_0} \ge 0$$

Entropy Generation by Irreversibility

Thermal System – excluding the external heat reservoirs

Related to internal irreversibility

$$\dot{S}_{gen}^{cycle} = -\frac{\left|\dot{Q}_{0}\right|}{T_{0} + \Delta T_{0}} + \frac{\dot{Q}}{T - \Delta T} \ge 0$$

 $(T_0 + \Delta T_0)$

T₀

 $(T_0 + \Delta T_0)$

Introduction to Irreversible Closed Cycles Endo-reversible Carnot cycle Entropy Balance

Irr or N_{irrev} is the overall irreversibility function related to T and T_0 , $N_{irrev}^{internal}$ is the number of internal irreversibility related to $(T - \Delta T)$ and $(T0 - \Delta T_0)$, Irr is the internal irreversibility function related to other reference temperatures on the cycle T_0^* and T^* different from $(T - \Delta T)$ and $(T0 - \Delta T_0)$

Introduction to Irreversible non-Carnot Closed Cycles

Introduction to Irreversible non-Carnot Closed Cycles

Introduction to Irreversible non Carnot Closed Cycles

Where T is the temperature of the heat source and, $\theta_{SLT} = \frac{T}{T_{mq}^{2r-3t}}$ is a second law of thermodynamics correction function linking the heat transfer to the involved mean thermodynamic temperatures

Introduction to Irreversible non Carnot Closed Cycles

Irreversible First Law Efficiency - Refrigeration Cycles

Introduction to Irreversible non Carnot Closed Cycles Conclusions

1. η_{irrev} and COPirrev includes explicitly the overall irreversibility (internal and external one)

2.
$$N_{irrev} = \left(1 + \frac{\dot{S}_{gen}}{\theta_{SLT}\dot{m}\Delta s_{q}}\right)$$

has the meaning of the overall number of irreversibility, it evaluates both

the external irreversibility due to the heat transfer at finite temperature differences, and the internal ones.

3. When
$$S_{gen} \rightarrow 0$$
 then $N_{irrev} \rightarrow 1$

4. The correction function Θ_{SLT} links the heat input at temperature T to the heat absorbed by the working fluid at temperature $T_{mg} < T$

Introduction to Irreversible non Carnot Closed Cycles

Conclusions – Engines

Introduction to Irreversible non Carnot Closed Cycles

THE WAY TO OPTIMIZE THE IRREVERSIBLE CYCLES

The optimization of cycles:

- ✓ first and second law efficiencies (exergy analysis),
- \checkmark entropy generation minimization, and sometimes
- ✓Novikov–Curzon–Ahlborn maximum power issue.

The paper presents a concise method to evaluate directly the irreversibility, inside a unique criterion uniting first and second laws, called here *the irreversible first law efficiency*.

Key words:

NTUS, second law effectiveness of external heat exchanges

✓irreversible maximum power,

✓number of internal irreversibility, number of external irreversibility✓irreversible first law efficiency

Engines Reversibility Principle - engineering realm -

S Any ideal cycle is characterized by no entropy generation

The possible ideal engine cycles in temperature – entropy diagram

LLLP ERASMUS - NANCY - 2013

 $s_2 - s_1 = s_3 - s_4 = c_n \ln(T/T_0)$

All Complete Reversible Engine Cycles

$$\eta_{rev} = 1 - \frac{T_0}{T}$$

tropy generation
$$S_{gen} = 0$$
.

Introduction

"Optimization of Irreversible Cycles", FTT or FST

The ideal cycles are characterized by no entropy generation, $S_{gen} = 0$.

- The *Finite Time Thermodynamics (FTT)*, or *Finite Speed Thermodynamics (FST)* is a feature of the originator works of:
- CHAMBADAL (1957) and NOVIKOV (1958) studies about nuclear cycles,
- CURZON et AHLBORN (1975) the time-based thermodynamic analysis in view of the real heat transfer made at finite temperature difference,
- YAN et al. (1989), GROSU et al. (2004), CHEN et al. (1997, 1999) analyzed the irreversible cycles with three external heat sinks

THE IDEAL REVERSIBLE CYCLES ARE CONSIDERED AS USELESS, THEY MIGHT SUPPLY THE MAXIMUM ENGINES WORK, BUT NO POWER. THE REQUIRED TIME BY THE REVERSIBLE HEAT TRANSFER AT INFINITESIMAL TEMPERATURE DIFFERENCE REQUIRES AN INFINITE PROCESS TIME (I.E. THE POWER, WHICH IS RATIO WORK PER TIME IS IN FACT ZERO).

The Irreversible First Law Efficiency External Irreversibility Endo-Reversible CARNOT Engine

The second law effectiveness of the heat exchange with the heat source

The second law effectiveness at the heat exchange at the hot reservoir

$$\varepsilon_{II} = \frac{\dot{Q}}{\left(\dot{Q}\right)_{NTUS \to \infty}} = \frac{NTUS}{NTUS + 1} < 1 \Longrightarrow$$

The second law effectiveness of the heat exchange at the cold sink

$$\varepsilon_{\mathrm{II},0} = \frac{|\dot{\mathbf{Q}}_{0}|}{\left(|\dot{\mathbf{Q}}_{0}|\right)_{\mathrm{NTUS}_{0}\to\infty}} = \frac{\mathrm{NTUS}_{0}}{\mathrm{NTUS}_{0}-1} > 1 \Longrightarrow \begin{vmatrix} \dot{\mathbf{Q}}_{0} \end{vmatrix} = \varepsilon_{0} \left(|\dot{\mathbf{Q}}_{0}|\right)_{\mathrm{NTUS}_{0}\to\infty} = \varepsilon_{\mathrm{II},0} \left|\dot{\mathbf{Q}}_{min}\right| = \varepsilon_{\mathrm{II},0} \dot{\mathbf{m}} \mathbf{T}_{0} \left|\Delta \mathbf{s}_{q,0}\right| \Longrightarrow \begin{vmatrix} \dot{\mathbf{Q}}_{0} \end{vmatrix} > \left|\dot{\mathbf{Q}}_{min}\right| = \left|\Delta \mathbf{s}_{q,0}\right|_{\mathrm{NTUS}_{0}\to\infty}, \quad \Delta \mathbf{T}_{0}\to\mathbf{0}$$

The dependence second law effectiveness – NTUS

The Irreversible First Law Efficiency External Irreversibility Endo-Reversible CARNOT Engine

The Irreversible First Law Efficiency

$$\eta_{I} = 1 - \frac{1}{\tau} \frac{\varepsilon_{II,0}}{\varepsilon_{II}} = 1 - \frac{1}{\tau} N_{irr,ext}$$

Considerations on the Real Power Cycles

The real power cycles are also internally irreversible, respectively:

- the heat transfer processes, 2–3 and 4–1, are non-isothermal;
- the adiabatic processes, 2–3 and 4–1, are non-isentropic;
- the external heat reservoirs have finite heat capacities, respectively are non-isothermal;
- the mean log temperature difference pertaining to the heat transfers has a value that it is not equalizing the difference of the mean thermodynamic temperatures.

This dissimilarity can be solved step by step by introducing the necessary amendment coefficients in order to take into account also the internal irreversibility.

The Irreversible First Law Efficiency External Irreversibility Any Endo-Reversible Engine

The Irreversible First Law Efficiency Internal Irreversibility Any Basic Irreversible Engine

1 - 2r irreversible adiabatic compression, 2r - 3r irreversible heating 3r - 4r irreversible adiabatic expansion, 4r - 1 irreversible cooling

$$\Delta s_q = s_{3t} - s_{2r}$$

$$\begin{aligned} \mathbf{AS}_{q0} &| = \mathbf{S}_{4r} - \mathbf{S}_{5t} \\ &= \mathbf{S}_{q} + \Delta \mathbf{S}_{irr}^{1-2} + \Delta \mathbf{S}_{irr}^{2-3} + \Delta \mathbf{S}_{irr}^{3-4} + \Delta \mathbf{S}_{irr}^{4-1} = \\ &= \Delta \mathbf{S}_{q} \cdot \mathbf{N}_{irr,int} \end{aligned}$$

$$N_{irr,int} = \left(1 + \frac{\left(\sum \Delta s_{irr}\right)_{int}}{\Delta s_{q}}\right) > 1$$

The Irreversible First Law Efficiency Internal Irreversibility Any Basic Irreversible Engine

$$\begin{split} \eta_{\text{engine}} &= \frac{P}{\dot{Q}^{2r-3t}} = 1 - \frac{\left| \dot{Q}_{0}^{4r-5t} \right|}{\dot{Q}^{2r-3t}} = \\ &= 1 - \frac{\dot{m} \cdot T_{mq}^{4r-5t} \cdot \left| \Delta s_{q0} \right|}{\dot{m} \cdot T_{mq}^{2r-3t} \cdot \Delta s_{q}} = 1 - \frac{T_{mq}^{4r-5t}}{T_{mq}^{2r-3t}} N_{\text{irr,int}}^{\text{engine}} \end{split}$$

The Irreversible First Law Efficiency External and Internal Irreversibility Any Basic Irreversible Engine

The Irreversible First Law Efficiency Internal Irreversibility Any Irreversible Engine with Internal Heat Transfer (Internal Regeneration of Heat)

 1 – 2r irreversible adiabatic compression, 2r – 3r internal irreversible heating by heat regeneration, 3r – 4r irreversible heating, 4r – 5r irreversible adiabatic expansion, 5r – 6r internal irreversible cooling by heat regeneration,

6r – 1 irreversible cooling.

$$\Delta \mathbf{s}_{\mathbf{q}} = \Delta \mathbf{s}_{\mathbf{3}-4} = \mathbf{s}_{\mathbf{4}\mathbf{t}} - \mathbf{s}_{\mathbf{3}\mathbf{r}}$$

$$T_{mq}^{2r-3t}(s_{3t} - s_{2r}) = T_{mq}^{5r-6t}(s_{5t} - s_{6r})$$

$$\begin{split} \Delta s_{q0} \Big| &= s_{6r} - s_{7t} = \Delta s_q + \left(s_{3t} - s_{2r}\right) \left(1 - \frac{T_{mq}^{2r - 3t}}{T_{mq}^{5r - 6t}}\right) + \\ &\Delta s_{irr}^{1-2} + \Delta s_{irr}^{2-3} + \Delta s_{irr}^{3-4} + \Delta s_{irr}^{4-5} + \Delta s_{irr}^{5-6} + \Delta s_{irr}^{6-7} \end{split}$$

The Irreversible First Law Efficiency Internal Irreversibility Any Irreversible Engine with Internal Heat Transfer (Internal Regeneration of Heat)

$$N_{irr,int} = \left(1 + \frac{\left(\sum \Delta s_{irr}\right)_{int}}{\Delta s_{q}} + \frac{\left(s_{3t} - s_{2r}\right)}{\Delta s_{q}} \left(1 - \frac{T_{mq}^{2r-3t}}{T_{mq}^{5r-6t}}\right)\right) > 1$$

$$\eta_{engine} = \frac{\dot{W}}{\dot{Q}} = 1 - \frac{\left|\dot{Q}_{0}\right|}{\dot{Q}} = 1 - \frac{\dot{m} \cdot T_{mq}^{6r-7t} \cdot \left|\Delta s_{q0}\right|}{\dot{m} \cdot T_{mq}^{3r-4t} \cdot \Delta s_{q}} = 1 - \frac{T_{mq}^{6r-7t}}{T_{mq}^{3r-4t}} N_{irr,int}$$

The Irreversible First Law Efficiency

External and Internal Irreversibility Any Irreversible Engine with Internal Heat Transfer (Internal Regeneration of Heat)

$$\begin{split} \eta_{engine} &= 1 - \frac{T_{mq0}}{T_{mq}} \frac{\varepsilon_{II,0}}{\varepsilon_{II}} \frac{C_{\Delta s_q}}{C_{\Delta s_{q0}}} N_{irr,\text{int}} = \\ &= 1 - \frac{1}{\tau} \cdot N_{irr,ext} \cdot N_{irr,\text{int}} \end{split}$$

The Irreversible First Law Efficiency Internal Irreversibility Any Irreversible Co-generation Engine

$$\left|\Delta \mathbf{s}_{q,0}^{\text{cog}}\right| = \left|\Delta \mathbf{s}_{5-1}\right| = \mathbf{s}_{5t} - \mathbf{s}_{6t} = \left|\Delta \mathbf{s}_{4-1}\right| - \left|\Delta \mathbf{s}_{cog}\right| = \Delta \mathbf{s}_{q} \left(1 + \frac{\left(\sum \Delta \mathbf{s}_{irr}\right)_{int}^{\text{engine}} - \left|\Delta \mathbf{s}_{cog}\right|}{\Delta \mathbf{s}_{q}}\right)$$

For endo-reversibility $N_{irr,int}^{cog} \rightarrow 0$ and $\eta_{overall} \rightarrow 1$

Numerical Results

- The computational procedure assumed the following restrictive conditions.
- > Variable heat capacities of gases, fourth degree temperature polynomials;
- >Adiabatic exponents of the reversible processes computed as the ratio of enthalpy variation to internal energy variation.
- >In the case of engine heated by combustion, they were considered negligible dissociation during combustion, and the mass and energy balance equations of combustion gave the flue gases composition, the excess air value, and the fuel mass flow rate.

Numerical Results

First Figures compare the oxy-combustion with 90% mass fraction of O_2 in the oxygenated air, and the air combustion, for an open Joule – Brayton cogeneration cycle. The restrictive conditions were: maximum temperature on the cycle, 1200°C; isentropic efficiency of the compressor, 0.88; isentropic efficiency of the gas turbine, 0.94; pressure loss coefficient in the combustion chamber, 0.98; the fuel mass composition of 15% H₂ and 85% C; higher heating value of the fuel ~46,000 kJ/kg.

Next Figures compare six possible working fluids, air, O₂, N₂, CO₂, H₂ and He, in a closed Joule – Brayton engine cycle externally heated, e.g. by solar energy. The restrictive conditions were: maximum temperature on the cycle, 1000°C; the minimum temperature on the cycle, 20°C; isentropic efficiency of the compressor, 0.88; isentropic efficiency of the gas turbine, 0.94; pressure loss coefficient in the heat exchanger connecting the external hot source, 0.98; pressure loss coefficient in the heat exchanger connecting the external cold sink, 0.98; variable heat capacities; adiabatic exponent computed as the ratio of heat capacities at constant pressure and constant volume.

The dependence number of internal irreversibility – compression ratio for the basic engine cycle

The dependence overall number of internal irreversibility – compression ratio for the cogeneration cycle

Numerical Results

The dependence specific power output on compression ratio for the basic engine cycle

The dependence irreversible first law efficiency (thermodynamic efficiency) on compression ratio for the basic engine cycle

Comparison of the dependence irreversible first law efficiency (thermodynamic efficiency) on compression ratio for both the basic engine cycle and the engine cycle with internal regeneration of heat, only for CO2 as working fluid

The dependence number of internal irreversibility on compression ratio for the basic engine cycle

- This paper deals with a new optimization criteria, the irreversible first law efficiency applied to the real cycles.
- This new approach emphasizes the overall irreversibility by the means of the numbers of internal and external irreversibility, directly inside the first law efficiency.
- It yields that the maximum power is not unique, as it was assumed untill now, respectively depends on the nature of the working fluid and on the restrictive conditions.
- The irreversible first law efficiency conducts to the reversible limit, i.e. the reversible Carnot engine, respectively offers the simplest comparison.

For complex cycles, we have only to deal carefully with the entropy variations and thermal interactions during the heat transfer processes.

Important remark: the second law effectiveness, defined in this paper, takes into account only the thermal interactions connecting the working fluids with external heat reservoirs, the internal heat exchanges of complex cycles, e.g. in the case of combined cycles, the heat transfer between the top cycle and the bottom one is included in the number of internal irreversibility; for instance, refer to the simple manner to manage the internal heat exchange of Power Cycles with Internal Heat Transfer.

The direct method presented in this presentation is a concise one, equivalent to exergy analysis, since the lost exergy is proportional to the entropy irreversibly generated. The comparison of possible fluids used in a closed Joule – Brayton cycle, externally heated, shows that CO_2 offers a substantial potential for internal regeneration of heat, see the below table, that includes the difference of temperatures of the fluid leaving the turbine and the compressor.

Table 1. The difference between temperatures of the fluid leaving the turbineand the compressor, [\mathcal{C}]

Compression Ratio	Air	O2	N2	CO2	Не	H2
5,00	401	423	397	593	123	367
10,00	158	191	152	431	41	115
15,00	17	57	9	337		
20,00				272		
25,00				221		

Overview

- 1. Introduction
- 2. Mathematical model
- 3. Results and discussion
- 4. Conclusions

First and Second Laws Relationship – CV-HP

• First Law – Energy Balance

$$\begin{aligned} \mathbf{Q} &= \mathbf{Q}_{e} = \mathbf{Q}_{4r-1t} = \dot{m} T_{mq}^{4r-1t} (\mathbf{s}_{1t} - \mathbf{s}_{4r}) = \dot{m} T_{mq}^{4r-1t} \Delta \mathbf{s}_{q} > 0 \\ \dot{\mathbf{Q}}_{0} &= \dot{\mathbf{Q}}_{c} = \dot{\mathbf{Q}}_{2r-3t} = \dot{m} T_{mq}^{2r-3t} (\mathbf{s}_{3t} - \mathbf{s}_{2r}) = \dot{m} T_{mq}^{2r-3t} \Delta \mathbf{s}_{q0} < 0 \\ \dot{\mathbf{W}} &= \dot{\mathbf{Q}} + \dot{\mathbf{Q}}_{0} = \dot{\mathbf{Q}} - \left| \dot{\mathbf{Q}}_{0} \right| < 0 \end{aligned}$$

2t

2

Т

$$\Delta s_{q} = s_{1t} - s_{4r}$$

$$\Delta s_{q0} = s_{3t} - s_{2r} = \Delta s_{q} + \Delta s_{irrev}^{4-1} + \Delta s_{irrev}^{1-2} + \Delta s_{irrev}^{2-3} + \Delta s_{irrev}^{3-4}$$

$$= \Delta s_{q} + \left(\sum \Delta s_{irrev}\right)_{int}$$

First and Second Laws Relationship – CV-HP

• First Law – Energy Balance

First and Second Laws Relationship – CV-HP

• Second Law – entropy balance

Internal irreversibility

$$\frac{\dot{Q}}{T_{mq}^{4r-1t}} N_{irr,int} - \frac{\left|\dot{Q}_{0}\right|}{T_{mq}^{2r-3t}} = 0 \text{ or } \frac{\dot{Q}}{T_{ref}^{4-1}} Irr - \frac{\left|\dot{Q}_{0}\right|}{T_{ref}^{2-3}} = 0$$

or e.g. (CV - HP) $\frac{\dot{Q}_{e}}{T_{e}} Irr - \frac{\left|\dot{Q}_{c}\right|}{T_{c}} = 0$

First and Second Laws Relationship – CV-HP

• United First and Second Laws

$$N_{irr,int} = COPR \frac{T_{mq}^{4r-1t}}{T_{mq}^{2r-3t}} \text{ or } Irr = COPR \frac{T_{ref}^{4-1}}{T_{ref}^{2-3}}$$

or e.g. (CV - HP) Irr = COPR $\frac{T_e}{T_c}$
where COPR = $\frac{COP_{HP}}{COP_{HP} - 1}$

Thermal Relationships of a Solar Assisted Compression

Vapor Heat Pump (CV-HP)

LLLP ERASMUS - NANCY - 2013

• Solar collector

Collector temperature under non-flow conditions

$$- \text{ Collector plate temperature } \quad T_{sc} = T_s - \frac{\eta_s I}{U_L}$$

Inlet temperature of the solar heat carrier

$$T_{sci} = T_{sc} - \frac{\eta_s IA}{\epsilon_{sc} \dot{C}_{sc}}$$

 $T_{s} = T_{a} + \frac{\eta_{o}I}{U_{r}}$

- Outlet temperature of the solar heat carrier $T_{sco} = T_{sci} + \frac{\eta_s IA}{\dot{C}}$

 η_o is optical efficiency of solar collector, Ta is environmental temperature, U_L is solar collector heat-loss coefficient; ε_{sc} is solar collector effectiveness; I is total solar radiation.

Heating system

Inlet/outlet temperatures of the useful heat carrier, were imposed by considering that the heating system asks:

✓ at
$$T_a = T_{aN} = 253.15$$
K, $T_{hi} = T_{hiN} = 323.15$ K and, $T_{ho} = T_{hoN} = 333.15$ K;

✓ at
$$T_a = T_{aS} = 288.15$$
K, $T_{hi} = T_{hiS} = 303.15$ K;

✓ for 253.15 K < T_a < 288.15 K: $T_{ho} \cong -0.5714286 \cdot T_a + 467.807143$

$$\checkmark T_{room} = 295.15K.$$

$$\frac{\dot{Q}_{heating}(T_a)}{\dot{Q}_{heating}(T_{aN})} = \frac{T_{hi} - T_{ho}}{T_{hiN} - T_{hoN}} \cong \frac{T_{room} - T_a}{T_{room} - T_{aN}} \Longrightarrow T_{hi}(T_a)$$

• Evaporator

$$\dot{\mathbf{Q}}_{\mathrm{e}} = \dot{\mathbf{C}}_{\mathrm{sc}} \left(\mathbf{T}_{\mathrm{sco}} - \mathbf{T}_{\mathrm{sci}} \right)$$

evaporator temperature

$$T_{e} = T_{sco} - \frac{\dot{Q}_{e}}{\varepsilon_{e}\dot{C}_{sc}}$$

Where ε_e is evaporator effectiveness.

• Heat pump irreversibility (entropy and energy balance)

$$\operatorname{Irr} \frac{\dot{Q}_{e}}{T_{e}} - \frac{\left| \dot{Q}_{c} \right|}{T_{c}} = 0 \implies \dot{Q}_{c}$$

$$Irr = \frac{(COP_{HP} + 1)}{COP_{HP}} \frac{T_e}{T_c} = COPR \frac{T_e}{T_c}$$

• Condenser

Condensing temperature

$$T_{c} = T_{ho} + \frac{\left| \dot{Q}_{c} \right|}{\varepsilon_{c} \dot{C}_{h}}$$

Where ε_c is condenser effectiveness

By CoolPack, and for adopted restrictive conditions inside the heat pump, it was interpolated, by square roots, the irreversibility, for $303.15K < T_c < 338.15K$, and, $258.15K < T_e < 288.15K$:

- refrigerant R22, errors: +1.1%, 3.1% COPR = $-0.90971003 + 1.850627 \frac{T_c}{T}$
- refrigerant R717, errors: +1.1%, 1.8% COPR = $-0.60229 + 1.568338 \frac{T_c}{T_e}$
- refrigerant R410A, errors: +1.1%, 6.6% COPR = $-1.68326472 + 2.551254 \frac{T_c}{T}$
- refrigerant R407c, errors: +1.1%, -4.9% COPR = $-1.371045642 + 2.272844431\frac{1}{3}$
- refrigerant R290, errors: +1.1%, -3.7% COPR = $-1.02348136 + 1.951886275 \frac{I_c}{T}$
- refrigerant R134a, errors: +1.1%, 3.6% COPR = $-0.9796944 + 1.9103469052 \frac{T_c}{T}$

• Power balance

$$\dot{\mathbf{W}} = \dot{\mathbf{Q}}_{e} + \dot{\mathbf{Q}}_{c} = \dot{\mathbf{Q}}_{e} - \left| \dot{\mathbf{Q}}_{c} \right|$$

$$\text{COP}_{\text{HP}} = \frac{\left| \dot{\mathbf{Q}}_{\text{c}} \right|}{\left| \dot{\mathbf{W}} \right|}$$

3. Results and discussion

• The correlated compilation of previous equations allowed in MathLab to find out numerical results, depending only on ε_e and ε_c . Figures 2 to 5 show selected numerical results for:

$$T_{a} = 273.15K; I = 50 \frac{W}{m^{2}}; \eta_{o} = 0.95; U_{L} = 2 \frac{W}{m^{2}K};$$
$$\dot{C}_{sc} = 1000 \frac{J}{KgK}; \dot{C}_{h} = 1000 \frac{J}{KgK}; \eta_{s} = 0.75; \varepsilon_{sc} = 0.75$$

3. Results and discussion

Fig.2. R22

Fig.3. R717

3. Results and discussion

Fig.4. R22

Fig.5. R717

The presentation presents a mathematical algorithm able in modeling the influences of evaporator and condenser effectiveness upon the all operational features of a heat pump: power, heat rates, and temperatures. The model start with the external heat sources imposed parameters and, combine these ones by the internal irreversibility of the heat pump (entropy balance).

> restart;

0,6

0,4

0,2

0

-0,2

-0,4

> restart;

 $\tau := 1.2$

1,6 1,4 1,2 1,0 0,8 · 0,6 0,4 ·

0,2 -|-0

0,2

0,4

eps

0,6

0,8

1

0,2

0,4

eps

0,6

s/tau);

 $\tau := 3$

$$P1 := eps \left(1 - \frac{1}{3} \frac{1}{eps}\right); P2 := eps \left(1 - \frac{0.4166666667}{eps}\right); P3 := eps \left(1 - \frac{0.5000000000}{eps}\right)$$

,line]);

1

$$P1 := eps\left(1 - \frac{1}{3} \frac{1}{eps}\right); P2 := eps\left(1 - \frac{0.4166666667}{eps}\right); P3 := eps\left(1 - \frac{0.500000}{eps}\right); P3 := eps\left(1 - \frac{0.5000000}{eps}\right); P3 := eps\left(1 - \frac{0.5000000}{eps}\right); P3 := eps\left(1 - \frac{0.5000000}{eps}\right); P3 := eps\left(1 - \frac{0.500000}{eps}\right); P3 :=$$

$$PI := eps\left(1 - \frac{1}{3} \frac{1}{eps}\right); P2 := eps\left(1 - \frac{0.4166666667}{eps}\right); P3 := eps\left(1 - \frac{0.5000000000}{eps}\right)$$

$$PI := eps \left(1 - \frac{1}{3} + \frac{1}{eps}\right), P2 := eps \left(1 - \frac{1}{eps}\right), P3 := eps \left(1 - \frac{1}{eps}\right)$$

> plot([P1(eps),P2(eps),P3(eps)], eps=0..1, color=[blue,red,black], style=[line,line]

$$PI := eps\left(1 - \frac{1}{3} \frac{1}{eps}\right); P2 := eps\left(1 - \frac{0.41666666667}{eps}\right); P3 := eps\left(1 - \frac{0.5000000000}{eps}\right)$$

$$PI := eps \left(1 - \frac{1}{3} \frac{1}{eps}\right); P2 := eps \left(1 - \frac{0.4166666667}{eps}\right); P3 := eps \left(1 - \frac{0.500000}{eps}\right); P3 := eps \left(1 - \frac{0.50000}{eps}\right); P3 := eps \left(1 - \frac{0.5000$$

$$:= eps \left(1 - \frac{1}{3} \frac{1}{eps}\right); P2 := eps \left(1 - \frac{0.4166666667}{eps}\right); P3 := eps \left(1 - \frac{0.41666666667}{eps}\right); P3 := eps \left(1 - \frac{0.4166666667}{eps}\right); P3 := eps \left(1 - \frac{0.41666666667}{eps}\right); P3 := eps \left(1 - \frac{0.41666666667}{eps}\right); P3 := eps \left(1 - \frac{0.416666666667}{eps}\right); P3 :=$$

0,8

> tau:=1.2;P1:=eps*(1*tau/eps-1);P2:=eps*(1.25*tau/eps-1);P3:=eps*(1.5*tau/eps-1);

> plot([P1(eps),P2(eps),P3(eps)], eps=0..1, color=[blue,red,black], style=[line,line,line]);

 $P1 := eps \left(\frac{1.2 \cdot 1}{eps} - 1\right); P2 := eps \left(\frac{1.500 \cdot 1}{eps} - 1\right); P3 := eps \left(\frac{1.80 \cdot 1}{eps} - 1\right)$

$$= eps \left(1 - \frac{1}{3} \frac{1}{eps}\right); P2 := eps \left(1 - \frac{0.41666666667}{eps}\right); P3 := eps \left(1 - \frac{0}{eps}\right); P3 := eps \left(1 - \frac{0}{eps}\right)$$

$$eps\left(1-\frac{1}{3},\frac{1}{eps}\right); P2 := eps\left(1-\frac{0.4166666667}{eps}\right); P3 := eps\left(1-\frac{1}{eps}\right); P3$$

JOULE - BRAYTON AGENTI DE LUCRU

> restart;

> cpaer:=1.01027-1.73736E-4*T+6.08005E-7*T^(2)-3.80644E-10*T^(3)+7.49874E-14*T^(4); cvaer:=0.72301-1.73889E-4*T+6.09496E-7*T^(2)-3.81877E-10*T^(3)+7.52717E-14*T^(4); cpO2:=0.82397+3.05587E-4*T+5.32089E-8*T^2-1.30137E-10*T^3+3.58225E-14*T^4; cvO2:=0.56574+2.96923E-4*T+6.54515E-8*T^2-1.36918E-10*T^3+3.71407E-14*T^4; cpH2O:=1.84336-2.31223E-4*T+1.1966E-6*T^2-6.15263E-10*T^3+1.0015E-13*T^4; cvH2O:=1.38161-2.29361E-4*T+1.19327E-6*T^2-6.13657E-10*T^3+9.99765E-14*T^4; cpN2:=1.07623-3.25964E-4*T+7.92186E-7*T^2-4.66137E-10*T^3+8.87148E-14*T^4; cvN2:=0.77884-3.22759E-4*T+7.86981E-7*T^2-4.62795E-10*T^3+8.79811E-14*T^4; cpCO2:=0.46236+0.0016*T-1.2402E-6*T^2+4.78609E-10*T^3-7.32796E-14*T^4; cvCO2:=0.27337+0.0016*T-1.24189E-6*T^2+4.79536E-10*T^3-7.34111E-14*T^4; cpHe:=5.19; cvHe:=3.12;

cpH2:=13.63327+0.00349*T-5.57821E-6*T^2+4.56786E-9*T^3-1.12853E-12*T^4; cvH2:=9.44039+0.00386*T-6.19336E-6*T^2+4.94382E-9*T^3-1.2046E-12*T^4; Raer:=(.2868355533+0.28726)/2:

RO2:=(.2599467914+0.25823)/2;

RN2:=(.2967773441+0.29739)/2;

RCO2:=(.190161689+0.18899)/2;

RHe:=2.07;

RH2:=(4.14292647+4.19288)/2;

 $cpaer := 1.01027 - 0.000173736T + 6.0800510^{-7} T^{2}$ $- 3.8064410^{-10} T^{3} + 7.4987410^{-14} T^{4}$

 $cvaer := 0.72301 - 0.000173889T + 6.0949610^{-7} T^{2}$ $- 3.8187710^{-10} T^{3} + 7.5271710^{-14} T^{4}$

 $cpO2 := 0.82397 + 0.000305587T + 5.3208910^{-8} T^{2}$ - 1.3013710^{-10} T^{3} + 3.5822510^{-14} T^{4}

$$cvO2 := 0.56574 + 0.000296923T + 6.5451510^8 T^2$$

- 1.3691810¹⁰ T³ + 3.7140710¹⁴ T⁴
$$cpH2O := 1.84336 - 0.000231223T + 0.0000011966T^2$$

- 6.1526310¹⁰ T³ + 1.001510¹³ T⁴
$$cvH2O := 1.38161 - 0.000229361T + 0.00000119327T^2$$

- 6.1365710¹⁰ T³ + 9.9976510¹⁴ T⁴
$$cpN2 := 1.07623 - 0.000325964T + 7.9218610^7 T^2$$

- 4.6613710¹⁰ T³ + 8.8714810¹⁴ T⁴
$$cvN2 := 0.77884 - 0.000322759T + 7.8698110^7 T^2$$

- 4.6279510¹⁰ T³ + 8.7981110¹⁴ T⁴
$$cpCO2 := 0.46236 + 0.0016 T - 0.00000124027^2 + 4.7860910^{10} T^3$$

- 7.3279610¹⁴ T⁴
$$cvCO2 := 0.27337 + 0.0016 T - 0.000001241897^2 + 4.7953610^{10} T^3$$

- 7.3411110¹⁴ T⁴
$$cpHe := 5.19$$

$$cvHe := 3.12$$

$$cpH2 := 13.63327 + 0.00349 T - 0.00000557821T^2 + 4.5678610^9 T^3$$

- 1.1285310¹² T⁴
$$cvH2 := 9.44039 + 0.00386 T - 0.000006193367^2 + 4.9438210^9 T^3$$

- 1.204610¹² T⁴
Raer := 0.2870477764
RO2 := 0.2970836724
RO2 := 0.2970836724
RCO2 := 0.189575844:
RHe := 2.07
RH2 := 4.16790323:

> T0:=273;etaC:=0.88;etaT:=0.94;etam:=0.99;dpsursa_calda:=0.98;dpsursa_rece:=0.98;

```
T0 := 273
```

etaC := 0.88

etaT := 0.94

etam := 0.99

 $dpsursa_calda := 0.98$

dpsursa_rece := 0.98

> DOMENIUpic;piC:=25;DomeniuT3;T3:=1273.15;

```
DOMENIUpic
```

```
piC := 25
```

DomeniuT3

T3 := 1273.15

> p1:=1;T1:=293.13;p2:=p1*piC;

p1 := 1

T1 := 293.13

p2 := 25

> COMPRIMARE;

```
dh12aer:=int(cpaer,T=T1..T2);
dh12O2:=int(cpO2,T=T1..T2);
dh12O2:=int(cpO2,T=T1..T2);
dh12CO2:=int(cpCO2,T=T1..T2);
dh12He:=int(cpHe,T=T1..T2);
dh12H2:=int(cpH2,T=T1..T2);
du12aer:=int(cvaer,T=T1..T2);
du12O2:=int(cvO2,T=T1..T2);
du12O2:=int(cvCO2,T=T1..T2);
du12CO2:=int(cvCO2,T=T1..T2);
du12CO2:=int(cvCO2,T=T1..T2);
```

du12H2:=int(cvH2,T=T1..T2);

k12aer:=dh12aer/du12aer;

k12O2:=dh12O2/du12O2;

k12N2:=dh12N2/du12N2; k12CO2:=dh12CO2/du12CO2; k12He:=dh12He/du12He; k12H2:=dh12H2/du12H2: COMPRIMARE $dh12aer := 1.010270000T2 - 293.1108246 - 0.00008686800000T2^{2}$ $+ 2.0266833310^{-7} T2^{3} - 9.51610000010^{-11} T2^{4}$ $+ 1.49974800010^{-14} T2^{5}$ $dh12O2 := 0.8239700000T2 - 254.8811671 + 0.0001527935000T2^{2}$ $+ 1.77363000010^{-8} T2^{3} - 3.25342500010^{-11} T2^{4}$ $+ 7.16450000010^{-15} T2^{5}$ $dh12N2 := 1.076230000T2 - 307.3000470 - 0.0001629820000T2^{2}$ $+ 2.64062000010^{-7} T2^{3} - 1.16534250010^{-10} T2^{4}$ $+ 1.77429600010^{-14} T2^{5}$ $dh12CO2 := 0.462360000072 - 194.7110245 + 0.00080000000072^{2}$ $-4.1340000010^{-7} T2^{3} + 1.19652250010^{-10} T2^{4}$ $-1.46559200010^{-14} T2^{5}$ dh12He := 5.1900000072 - 1521.344700 $dh12H2 := 13.63327000T2 - 4107.369452 + 0.001745000000T2^{2}$ $-0.00000185940333372^{3} + 1.14196500010^{9} T2^{4}$ $-2.25706000010^{-13} T2^{5}$ $du12aer := 0.723010000072 - 208.9100927 - 0.0000869445000072^{2}$ + 2.03165333310⁻⁷ $T2^3$ - 9.54692500010⁻¹¹ $T2^4$ $+ 1.50543400010^{-14} T2^{5}$ $du12O2 := 0.5657400000T2 - 178.9048192 + 0.0001484615000T2^{2}$ $+ 2.18171666710^{-8} T2^{-3} - 3.42295000010^{-11} T2^{-4}$

 $+ 7.42814000010^{-15} T2^{5}$
$$du12N2 := 0.7788400000T2 - 220.2259625 - 0.0001613795000T2^{2} + 2.62327000010^{-7} T2^{3} - 1.15698750010^{-10} T2^{4} + 1.75962200010^{-14} T2^{5}$$

```
du12CO2 := 0.2733700000T2 - 139.2998512 + 0.000800000000T2^{2} 
- 4.1396333310^{-7} T2^{-3} + 1.19884000010^{-10} T2^{-4} 
- 1.46822200010^{-14} T2^{-5}
```

$$du12He := 3.1200000072 - 914.5656000$$

$$du12H2 := 9.440390000T2 - 2889.703067 + 0.001930000000T2^{2}$$
$$- 0.000002064453333T2^{3} + 1.23595500010^{-9} T2^{4}$$
$$- 2.40920000010^{-13} T2^{5}$$

$$k12aer := (1.010270000T2 - 293.1108246 - 0.00008686800000T2^{2} + 2.02668333310^{-7} T2^{-3} - 9.51610000010^{-11} T2^{4} + 1.49974800010^{-14} T2^{-5}) / (0.7230100000T2 - 208.9100927 - 0.00008694450000T2^{-2} + 2.03165333310^{-7} T2^{-3} - 9.54692500010^{-11} T2^{-4} + 1.50543400010^{-14} T2^{-5})$$

```
k12O2 := (0.823970000072 - 254.8811671 + 0.000152793500072^{2} + 1.77363000010^{-8} T2^{3} - 3.25342500010^{-11} T2^{4} + 7.16450000010^{-15} T2^{5}) / (0.565740000072 - 178.9048192 + 0.000148461500072^{2} + 2.18171666710^{-8} T2^{3} - 3.42295000010^{-11} T2^{4} + 7.42814000010^{-15} T2^{5})
k12N2 := (1.07623000072 - 307.3000470 - 0.000162982000072^{2} - 307.3000470 - 0.000162982000072^{2})
```

$$+ 2.6406200010^{-7} T2^{3} - 1.16534250010^{-10} T2^{4} + 1.77429600010^{-14} T2^{5}) / (0.7788400000T2 - 220.2259625 - 0.0001613795000T2^{2} + 2.62327000010^{-7} T2^{3} - 1.15698750010^{-10} T2^{4} + 1.75962200010^{-14} T2^{5})$$

$$k12CO2 := (0.4623600000T2 - 194.7110245 + 0.0008000000000T2^{2} - 4.13400000010^{-7}T2^{-3} + 1.19652250010^{-10}T2^{-4} - 1.46559200010^{-14}T2^{-5}) / (0.2733700000T2 - 139.2998512 + 0.000800000000T2^{-2} - 4.13963333310^{-7}T2^{-3} + 1.19884000010^{-10}T2^{-4} - 1.46822200010^{-14}T2^{-5})$$

 $k12He := \frac{5.1900000072 - 1521.344700}{3.1200000072 - 914.5656000}$

```
k12H2 := (13.63327000T2 - 4107.369452 + 0.001745000000T2^{2} - 0.00000185940333T2^{3} + 1.14196500010^{-9}T2^{4} - 2.25706000010^{-13}T2^{5}) / (9.440390000T2 - 2889.703067 + 0.001930000000T2^{2} - 0.00000206445333T2^{3} + 1.23595500010^{-9}T2^{4} - 2.4092000010^{-13}T2^{5})
```

```
> eq12taer:=T2-T1*piC^((k12aer-1)/k12aer);
eq12tO2:=T2-T1*piC^((k12O2-1)/k12O2);
eq12tN2:=T2-T1*piC^((k12N2-1)/k12N2);
eq12tCO2:=T2-T1*piC^((k12CO2-1)/k12CO2);
eq12tHe:=T2-T1*piC^((k12He-1)/k12He);
eq12tH2:=T2-T1*piC^((k12H2-1)/k12H2);T2taer:=fsolve(eq12taer,T2);
T2tO2:=fsolve(eq12tO2,T2);
T2tN2:=fsolve(eq12tN2,T2);
T2tCO2:=fsolve(eq12tCO2,T2);
T2tHe:=fsolve(eq12tHe,T2);
```

```
T2tH2:=fsolve(eq12tH2,T2);
```

eq12tN2 := T2 - 293.13 $(((1.076230000 T2 - 307.3000470 - 0.0001629820000 T2^{2})$ $+ 2.640620000 10^{-7} T2^{3} - 1.165342500 10^{-10} T2^{4} + 1.774296000 10^{-14} T2^{5})/$ $(0.7788400000 T2 - 220.2259625 - 0.0001613795000 T2^{2}$ $+ 2.623270000 10^{-7} T2^{3} - 1.156987500 10^{-10} T2^{4} + 1.759622000 10^{-14} T2^{5})$ $- 1) (0.7788400000 T2 - 220.2259625 - 0.0001613795000 T2^{2}$ $+ 2.623270000 10^{-7} T2^{3} - 1.156987500 10^{-10} T2^{4} + 1.759622000 10^{-14} T2^{5}))$ $/ (1.076230000 T2 - 307.3000470 - 0.0001629820000 T2^{2}$ $+ 2.640620000 10^{-7} T2^{3} - 1.165342500 10^{-10} T2^{4} + 1.774296000 10^{-14} T2^{5})$

```
eq12tCO2 := T2
- 293.13
(((0.4623600000 T2 - 194.7110245 + 0.0008000000000 T2^{2})
25
- 4.134000000 10^{-7} T2^{3} + 1.196522500 10^{-10} T2^{4} - 1.465592000 10^{-14} T2^{5})/
(0.2733700000 T2 - 139.2998512 + 0.000800000000 T2^{2}
- 4.139633333 10^{-7} T2^{3} + 1.198840000 10^{-10} T2^{4} - 1.468222000 10^{-14} T2^{5})
- 1) (0.2733700000 T2 - 139.2998512 + 0.000800000000 T2^{2}
- 4.139633333 10^{-7} T2^{3} + 1.198840000 10^{-10} T2^{4} - 1.468222000 10^{-14} T2^{5}))
/ (0.4623600000 T2 - 194.7110245 + 0.000800000000 T2^{2}
- 4.134000000 10^{-7} T2^{3} + 1.196522500 10^{-10} T2^{4} - 1.465592000 10^{-14} T2^{5})
```

eq12tHe := T2 - 293.13 $\frac{\left(\frac{5.19000000 T2 - 1521.344700}{3.12000000 T2 - 914.5656000} - 1\right) (3.12000000 T2 - 914.5656000)}{5.190000000 T2 - 1521.344700}$ eq12tH2 := T2 - 293.13 $\left(\left(\left(13.63327000 T2 - 4107.369452 + 0.001745000000 T2^{2} - 257060000 10^{-13} T2^{5}\right)\right)\right) / (9.440390000 T2 - 2889.703067 + 0.001930000000 T2^{2}$ $- 0.000002064453333 T2^{3} + 1.235955000 10^{-9} T2^{4} - 2.409200000 10^{-13} T2^{5})$ $- 1) (9.440390000 T2 - 2889.703067 + 0.001930000000 T2^{2}$ $- 0.000002064453333 T2^{3} + 1.235955000 10^{-9} T2^{4} - 2.409200000 10^{-13} T2^{5})$ $- 1) (9.440390000 T2 - 2889.703067 + 0.001930000000 T2^{2}$ $- 0.000002064453333 T2^{3} + 1.235955000 10^{-9} T2^{4} - 2.409200000 10^{-13} T2^{5})$ $- 1) (9.440390000 T2 - 2889.703067 + 0.001930000000 T2^{2}$ $- 0.000002064453333 T2^{3} + 1.235955000 10^{-9} T2^{4} - 2.409200000 10^{-13} T2^{5})$ $- 1) (9.440390000 T2 - 2889.703067 + 0.001930000000 T2^{2}$ $- 0.000002064453333 T2^{3} + 1.235955000 10^{-9} T2^{4} - 2.409200000 10^{-13} T2^{5})$ $- 1) (9.440390000 T2 - 2889.703067 + 0.001930000000 T2^{2}$ $- 0.000002064453333 T2^{3} + 1.235955000 10^{-9} T2^{4} - 2.409200000 10^{-13} T2^{5})$ $- 1) (13.63327000 T2 - 4107.369452 + 0.001745000000 T2^{2}$

 $-0.000001859403333 T2^3 + 1.141965000 10^{-9} T2^4 - 2.257060000 10^{-13} T2^5)$

T2taer := 715.540678:

T2tO2 := 693.2823202

T2tN2 := 719.926594′

T2tCO2 := 557.074029

T2tHe := 1058.32768.

T2tH2 := 732.468008

> dh12taer:=int(cpaer,T=T1..T2taer);

dh12tO2:=int(cpO2,T=T1..T2tO2);

dh12tN2:=int(cpN2,T=T1..T2tN2);

dh12tCO2:=int(cpCO2,T=T1..T2tCO2);

dh12tHe:=int(cpHe,T=T1..T2tHe);

dh12tH2:=int(cpH2,T=T1..T2tH2);

dh12raer:=dh12taer/etaC; dh12rO2:=dh12tO2/etaC; dh12rN2:=dh12tN2/etaC; dh12rCO2:=dh12tCO2/etaC; dh12rHe:=dh12tHe/etaC;

dh12rH2:=dh12tH2/etaC;

- *dh12taer* :=437.418274⁴
- *dh12tO2* := 389.343024
- *dh12tN2* := 453.691271.
- *dh12tCO2* := 250.392205
- *dh12tHe* := 3971.37597(
- *dh12tH2* := 6365.19180{
- *dh12raer* := 497.0662209
- *dh12rO2* := 442.435254'
- *dh12rN2* := 515.558262'
- *dh12rCO2* := 284.536596'
- *dh12rHe* := 4512.927239
- *dh12rH2* := 7233.172509

> eq12raer:=dh12raer-int(cpaer,T=T1..T2riaer); eq12rO2:=dh12rO2-int(cpO2,T=T1..T2riO2); eq12rN2:=dh12rN2-int(cpN2,T=T1..T2riN2); eq12rCO2:=dh12rCO2-int(cpCO2,T=T1..T2riCO2); eq12rHe:=dh12rHe-int(cpHe,T=T1..T2riHe); eq12rH2:=dh12rH2-int(cpH2,T=T1..T2riH2); T2raer:=fsolve(eq12raer,T2riaer); T2rO2:=fsolve(eq12raer,T2riaer); T2rN2:=fsolve(eq12rN2,T2riO2); T2rCO2:=fsolve(eq12rCO2,T2riCO2); T2rHe:=fsolve(eq12rHe,T2riHe); T2rH2:=fsolve(eq12rHe,T2riHe);

```
eq12raer := 790.1770455 - 1.010270000T2riaer 
+ 0.00008686800000T2riaer^2 - 2.02668333310^7 T2riaer^3 
+ 9.51610000010^{-11} T2riaer^4 - 1.49974800010^{-14} T2riaer^5
```

```
eq12rO2 := 697.3164218 - 0.823970000072riO2 
- 0.000152793500072riO2^2 - 1.77363000010^{-8} T2riO2^3 
+ 3.25342500010^{-11} T2riO2^4 - 7.16450000010^{-15} T2riO2^5
```

```
eq12rN2 := 822.8583097 - 1.076230000T2riN2 
+ 0.0001629820000T2riN2<sup>2</sup> - 2.64062000010<sup>-7</sup> T2riN2<sup>3</sup> 
+ 1.16534250010<sup>-10</sup> T2riN2<sup>4</sup> - 1.77429600010<sup>-14</sup> T2riN2<sup>5</sup>
```

```
eq12rCO2 := 479.2476212 - 0.462360000072riCO2
- 0.000800000000072riCO2<sup>2</sup> + 4.13400000010<sup>-7</sup> T2riCO2<sup>3</sup>
- 1.19652250010<sup>-10</sup> T2riCO2<sup>4</sup> + 1.46559200010<sup>-14</sup> T2riCO2<sup>5</sup>
```

```
eq12rHe := 6034.271939 - 5.19000000072riHe
eq12rH2 := 11340.54196 - 13.6332700072riH2
- 0.00174500000072riH2^{2} + 0.00000185940333372riH2^{3}
- 1.14196500010^{-9} T2riH2^{4} + 2.25706000010^{-13} T2riH2^{5}
T2raer := 770.588174
T2rO2 := 744.709858
```

```
T2rN2 := 775.747907(
```

```
T2rCO2 := -836.3372280589.46235214891.31270:
```

```
T2rHe := 1162.67282
```

 $T2rH2 := -1860.068448791.53625184191.59390^{2}$

```
>
```

SURSA_CALDA;T2aer:=770.5881744;T2O2:=744.7098586;T2N2:=775.7479070;T2CO2:=589.4623521;T2He:=11 62.672821;T2H2:=791.5362518;dh23aer:=int(cpaer,T=T2aer..T3);dh23O2:=int(cpO2,T=T2O2..T3);dh23N2:=int(c pN2,T=T2N2..T3);dh23CO2:=int(cpCO2,T=T2CO2..T3);dh23He:=int(cpHe,T=T2He..T3);dh23H2:=int(cpH2,T=T2H 2..T3);p3:=p2*dpsursa_calda;

SURSA_CALDA

T2aer := 770.5881744

```
T2O2 := 744.709858(

T2N2 := 775.747907(

T2CO2 := 589.462352(

T2He := 1162.67282

T2H2 := 791.536251(

dh23aer := 573.627311(

dh23O2 := 574.473793(

dh23N2 := 581.273441(

dh23CO2 := 818.360928(

dh23He := 573.376559(

dh23H2 := 7253.31858(

p3 := 24.50
```

>

```
DESTINDERE; p4:=p1/dpsursa_rece; dh34aer:=int(cpaer, T=T3..T4); dh34O2:=int(cpO2, T=T3..T4); dh34N2:=int(cpN2, T=T3..T4); dh34CO2:=int(cpCO2, T=T3..T4); dh34He:=int(cpHe, T=T3..T4); dh34H2:=int(cpH2, T=T3..T4); du34Aeer:=int(cvA2, T=T3..T4); du34O2:=int(cvO2, T=T3..T4); du34N2:=int(cvN2, T=T3..T4); du34CO2:=int(cvCO2, T=T3..T4); du34He:=int(cvHe, T=T3..T4); du34H2:=int(cvH2, T=T3..T4); k34aer:=dh34aer/du34aer; k34O2:=dh34O2/du34O2; k34N2:=dh34N2/du34N2; k34CO2:=dh34CO2/du34CO2; k34He:=dh34He/du34He; k34H2:=dh34H2/du34H2; k34N2:=dh34H2/du34H2; k34N2:=dh34N2/du34N2; k34CO2:=dh34CO2/du34CO2; k34He:=dh34He/du34He; k34H2:=dh34H2/du34H2; k34N2:=dh34H2/du34H2; k34N2:=dh34N2/du34N2; k34CO2:=dh34CO2/du34CO2; k34He:=dh34He/du34He; k34H2:=dh34H2/du34H2; k34N2:=dh34H2/du34H2; k34N2:=dh34H2; k34N2:=dh34H2; k34N2:=dh34H2; k34N2:=dh34H2; k34N2:=dh34H2; k34N2:=dh34H2; k34N2:=dh34H2; k34N2; k34N2; k34N2; k34N2; k34N2; k34N2; k34N2; k34N2; k34N2; k
```

```
DESTINDERE

p4 := 1.02040816:

dh34aer := 1.01027000074 - 1363.804357 - 0.0000868680000074^{2}

+ 2.02668333310^{-7} T4^{-3} - 9.51610000010^{-11} T4^{4}

+ 1.49974800010^{-14} T4^{-5}

dh3402 := 0.823970000074 - 1271.790215 + 0.000152793500074^{2}

+ 1.77363000010^{-8} T4^{-3} - 3.25342500010^{-11} T4^{4}

+ 7.16450000010^{-15} T4^{-5}

dh34N2 := 1.07623000074 - 1404.131751 - 0.000162982000074^{2}
```

```
dh34N2 := 1.076230000T4 - 1404.131751 - 0.0001629820000T4^{4} + 2.64062000010^{-7}T4^{3} - 1.16534250010^{-10}T4^{4} + 1.77429600010^{-14}T4^{5}
```

```
dh34CO2 := 0.462360000074 - 1297.608550 + 0.00080000000074^{2} 
- 4.13400000010^{-7} T4^{3} + 1.19652250010^{-10} T4^{4} 
- 1.46559200010^{-14} T4^{5}
```

```
dh34He := 5.1900000074 - 6607.64850(
dh34H2 := 13.6332700074 - 18593.86055 + 0.00174500000074^{2} 
- 0.00000185940333374^{3} + 1.14196500010^{-9} T4^{4} 
- 2.25706000010^{-13} T4^{5}
```

```
du34aer := 0.7230100000T4 - 998.3612444 - 0.00008694450000T4^{2} 
+ 2.03165333310^{-7} T4^{3} - 9.54692500010^{-11} T4^{4} 
+ 1.50543400010^{-14} T4^{5}
```

```
du34O2 := 0.565740000074 - 940.8522976 + 0.000148461500074^{2} + 2.18171666710^{-8} T4^{3} - 3.42295000010^{-11} T4^{4} + 7.42814000010^{-15} T4^{5}
```

```
du34N2 := 0.7788400000T4 - 1026.231034 - 0.0001613795000T4^{2} 
+ 2.62327000010^{-7} T4^{3} - 1.15698750010^{-10} T4^{4} 
+ 1.75962200010^{-14} T4^{5}
```

```
du34CO2 := 0.273370000074 - 1056.354316 + 0.00080000000074^{2}- 4.13963333310^{-7} T4^{3} + 1.19884000010^{-10} T4^{4}- 1.46822200010^{-14} T4^{5}
```

```
du34He := 3.1200000074 - 3972.22800(
du34H2 := 9.44039000074 - 13328.46365 + 0.0019300000074^{2} 
- 0.00000206445333374^{3} + 1.23595500010^{-9} T4^{4} 
- 2.40920000010^{-13} T4^{5}
```

> piT:=p4/p3;eq34taer:=T4-T3*piT^((k34aer-1)/k34aer);eq34tO2:=T4-T3*piT^((k34O2-1)/k34O2);eq34tN2:=T4-T3*piT^((k34N2-1)/k34N2);eq34tCO2:=T4-T3*piT^((k34CO2-1)/k34CO2);eq34tHe:=T4-T3*piT^((k34He-1)/k34He);eq34tH2:=T4-T3*piT^((k34H2-

 $+ 1.23595500010^{-9} T4^{4} - 2.40920000010^{-13} T4^{5})$

 $+ 0.00193000000T4^2 - 0.000002064453333T4^3$

 $-2.25706000010^{-13} T4^{5})/(9.440390000T4 - 13328.46365)$

 $-0.00000185940333374^{3} + 1.14196500010^{-9} T4^{4}$

 $k34H2 := (13.63327000T4 - 18593.86055 + 0.001745000000T4^2)$

 $k34He := \frac{5.1900000074 - 6607.648500}{3.1200000074 - 3972.228000}$

+ 1.19884000010⁻¹⁰ $T4^4$ - 1.46822200010⁻¹⁴ $T4^5$)

 $+ 0.0008000000074^2 - 4.1396333310^7 T4^3$

 $-4.1340000010^{-7} T4^3 + 1.19652250010^{-10} T4^4$ $-1.46559200010^{-14} T4^{5})/(0.2733700000T4 - 1056.354316)$

 $k34CO2 := (0.4623600000T4 - 1297.608550 + 0.000800000000T4^{2})$

 $-0.0001613795000T4^{2} + 2.62327000010^{-7}T4^{3}$ $-1.15698750010^{-10} T4^4 + 1.75962200010^{-14} T4^5)$

 $+ 2.64062000010^{-7} T4^{3} - 1.16534250010^{-10} T4^{4}$

 $k34N2 := (1.076230000T4 - 1404.131751 - 0.0001629820000T4^{2})$

 $+ 1.77429600010^{-14} T4^{5}) / (0.7788400000T4 - 1026.231034)$

 $-3.42295000010^{-11} T4^4 + 7.42814000010^{-15} T4^5)$

 $+ 7.16450000010^{-15} T4^{5}) / (0.5657400000T4 - 940.8522976$ $+ 0.0001484615000T4^{2} + 2.18171666710^{-8}T4^{3}$

 $k34O2 := (0.8239700000T4 - 1271.790215 + 0.0001527935000T4^{2})$ + $1.77363000010^{-8} T4^3 - 3.25342500010^{-11} T4^4$

 $-0.0000869445000074^{2} + 2.03165333310^{-7} T4^{3}$ $-9.54692500010^{-11} T4^4 + 1.50543400010^{-14} T4^5)$

 $+ 1.49974800010^{-14} T4^{5})/(0.7230100000T4 - 998.3612444)$

 $+ 2.0266833310^{-7} T4^{3} - 9.51610000010^{-11} T4^{4}$

 $k34aer := (1.010270000T4 - 1363.804357 - 0.00008686800000T4^2)$

1)/k34H2);T4taer:=fsolve(eq34taer,T4);T4tO2:=fsolve(eq34tO2,T4);T4tN2:=fsolve(eq34tN2,T4);T4tCO2:=fsolve(eq34tCO2,T4);T4tHe:=fsolve(eq34tHe,T4);T4tH2:=fsolve(eq34tH2,T4);

```
piT := 0.0416493127
```

eq34taer := T4

- 1273.15

(((1.010270000 *T*4 - 1363.804357

```
0.04164931278
```

 $-\ 0.00008686800000\ T4^2 + 2.026683333\ 10^{-7}\ T4^3 - 9.516100000\ 10^{-11}\ T4^4$

 $+ 1.499748000 10^{-14} T4^5) / (0.7230100000 T4 - 998.3612444$

 $-\ 0.00008694450000\ T4^2 + 2.031653333\ 10^{-7}\ T4^3 - 9.546925000\ 10^{-11}\ T4^4$

 $+\ 1.505434000\ 10^{-14}\ T4^5\big)-1\big)\ \big(0.7230100000\ T4-998.3612444$

 $-\ 0.00008694450000\ T4^2 + 2.031653333\ 10^{-7}\ T4^3 - 9.546925000\ 10^{-11}\ T4^4$

+ 1.505434000 $10^{-14} T4^5$)) / (1.010270000 T4 - 1363.804357

 $-\ 0.00008686800000\ T4^2 + 2.026683333\ 10^{-7}\ T4^3 - 9.516100000\ 10^{-11}\ T4^4$

 $+ 1.499748000 10^{-14} T4^{5}$

eq34tO2 := T4 - 1273.15 $(((0.8239700000 T4 - 1271.790215 0.04164931278 + 0.0001527935000 T4^{2} + 1.773630000 10^{-8} T4^{3} - 3.253425000 10^{-11} T4^{4} + 7.164500000 10^{-15} T4^{5}) / (0.5657400000 T4 - 940.8522976 + 0.0001484615000 T4^{2} + 2.181716667 10^{-8} T4^{3} - 3.422950000 10^{-11} T4^{4} + 7.428140000 10^{-15} T4^{5}) - 1) (0.5657400000 T4 - 940.8522976 + 0.0001484615000 T4^{2} + 2.181716667 10^{-8} T4^{3} - 3.422950000 10^{-11} T4^{4} + 7.428140000 10^{-15} T4^{5}) - 1) (0.8239700000 T4 - 1271.790215 + 0.0001527935000 T4^{2} + 1.773630000 10^{-8} T4^{3} - 3.253425000 10^{-11} T4^{4}$

```
+ 7.164500000 \, 10^{-15} \, T4^5)
```

eq34tN2 := T4 - 1273.15 $(((1.076230000 T4 - 1404.131751 0.04164931278 - 0.0001629820000 T4^{2} + 2.640620000 10^{-7} T4^{3} - 1.165342500 10^{-10} T4^{4} + 1.774296000 10^{-14} T4^{5}) / (0.7788400000 T4 - 1026.231034 - 0.0001613795000 T4^{2} + 2.623270000 10^{-7} T4^{3} - 1.156987500 10^{-10} T4^{4} + 1.759622000 10^{-14} T4^{5}) - 1) (0.7788400000 T4 - 1026.231034 - 0.0001613795000 T4^{2} + 2.623270000 10^{-7} T4^{3} - 1.156987500 10^{-10} T4^{4} + 1.759622000 10^{-14} T4^{5}) - 1) (0.7788400000 T4 - 1026.231034 - 0.0001613795000 T4^{2} + 2.623270000 10^{-7} T4^{3} - 1.156987500 10^{-10} T4^{4} + 1.759622000 10^{-14} T4^{5})) / (1.076230000 T4 - 1404.131751 - 0.0001629820000 T4^{2} + 2.640620000 10^{-7} T4^{3} - 1.165342500 10^{-10} T4^{4}$

```
+ 1.774296000 \, 10^{-14} \, T4^5)
```

eq34tCO2 := T4 - 1273.15 $(((0.4623600000 T4 - 1297.608550 0.04164931278 + 0.000800000000 T4^{2} - 4.13400000 10^{-7} T4^{3} + 1.196522500 10^{-10} T4^{4} - 1.465592000 10^{-14} T4^{5})/(0.2733700000 T4 - 1056.354316 + 0.0008000000000 T4^{2} - 4.139633333 10^{-7} T4^{3} + 1.198840000 10^{-10} T4^{4} - 1.468222000 10^{-14} T4^{5}) - 1) (0.2733700000 T4 - 1056.354316 + 0.0008000000000 T4^{2} - 4.139633333 10^{-7} T4^{3} + 1.198840000 10^{-10} T4^{4} - 1.468222000 10^{-14} T4^{5}) - 1) (0.2733700000 T4 - 1056.354316 + 0.000800000000 T4^{2} - 4.139633333 10^{-7} T4^{3} + 1.198840000 10^{-10} T4^{4} - 1.468222000 10^{-14} T4^{5})) / (0.4623600000 T4 - 1297.608550 + 0.0008000000000 T4^{2} - 4.13400000 10^{-7} T4^{3} + 1.196522500 10^{-10} T4^{4}$

```
-1.465592000 \ 10^{-14} \ T4^{5}
```

eq34tHe := *T4* - 1273.15

 $\frac{1}{0.04164931278^{5.190000000\ T4-6607.648500}}((1/$

(3.12000000 T4 - 3972.228000)(5.190000000 T4 - 6607.648500) - 1)

(3.12000000 T4 - 3972.228000))

```
eq34tH2 := T4
- 1273.15
(((13.63327000 T4 - 18593.86055 0.04164931278 + 0.001745000000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.257060000 10^{-13} T4^{5})/(9.440390000 T4 - 13328.46365 + 0.001930000000 T4^{2} - 0.000002064453333 T4^{3} + 1.235955000 10^{-9} T4^{4} - 2.409200000 10^{-13} T4^{5}) - 1) (9.440390000 T4 - 13328.46365 + 0.001930000000 T4^{2} - 0.000002064453333 T4^{3} + 1.235955000 10^{-9} T4^{4} - 2.409200000 10^{-13} T4^{5}) - 1) (9.440390000 T4 - 13328.46365 + 0.001930000000 T4^{2} - 0.000002064453333 T4^{3} + 1.235955000 10^{-9} T4^{4} - 2.409200000 10^{-13} T4^{5})) / (13.63327000 T4 - 18593.86055 + 0.001745000000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 10^{-13} T4^{5})) / (13.63327000 T4 - 18593.86055 + 0.001745000000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 1.141965000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 0.00174500000 10^{-9} T4^{4} - 2.409200000 T4^{2} - 0.000001859403333 T4^{3} + 0.00174500000 T4^{2} - 0.00000000000 T4
```

```
T4taer := 563.858288(
T4tO2 := 588.563841
T4tN2 := 558.614184'
T4tCO2 := 779.220393'
T4tHe := 358.359184
```

T4tH2 := 527.2298360

 $-2.257060000 \ 10^{-13} \ T4^{5}$

>

dh34taer:=int(cpaer,T=T3..T4taer);dh34tO2:=int(cpO2,T=T3..T4tO2);dh34tN2:=int(cpN2,T=T3..T4tN2);dh34tCO2 :=int(cpCO2,T=T3..T4tCO2);dh34tHe:=int(cpHe,T=T3..T4tHe);dh34tH2:=int(cpH2,T=T3..T4tH2);dh34raer:=dh34t aer*etaT;dh34rO2:=dh34tO2*etaT;dh34rN2:=dh34tN2*etaT;dh34rCO2:=dh34tCO2*etaT;dh34rHe:=dh34tHe*eta T;dh34rH2:=dh34tH2*etaT;

dh34taer := -794.205571 *dh34tO2* := -733.684384 *dh34tN2* := -818.145225(dh34tCO2 := -607.270583'

dh34tHe := -4747.76433

dh34tH2 := -11114.3957:

dh34raer := -746.553236

dh34rO2 := -689.663321

```
dh34rN2 := -769.056511:
```

dh34rCO2 := -570.834348'

dh34rHe := -4462.89847.

dh34rH2 := -10447.53200

> eq34raer:=dh34raer-int(cpaer,T=T3..T4riaer);eq34rO2:=dh34rO2-int(cpO2,T=T3..T4riO2);eq34rN2:=dh34rN2int(cpN2,T=T3..T4riN2);eq34rCO2:=dh34rCO2-int(cpCO2,T=T3..T4riCO2);eq34rHe:=dh34rHeint(cpHe,T=T3..T4riHe);eq34rH2:=dh34rH2-

int(cpH2,T=T3..T4riH2);T4raer:=fsolve(eq34raer,T4riaer);T4rO2:=fsolve(eq34rO2,T4riO2);T4rN2:=fsolve(eq34rN2,T4riN2);T4rCO2:=fsolve(eq34rCO2,T4riCO2);T4rHe:=fsolve(eq34rHe,T4riHe);T4rH2:=fsolve(eq34rH2,T4riH2);T4rH2;T4riH2);T4rH2;T4rH2;T4riH2);T4rH2;T4riH2;T4

);

```
eq34raer := 617.2511202- 1.010270000T4riaer
```

+ 0.00008686800000 *T4riaer*² - 2.02668333310^{-7} *T4riaer*³ + 9.51610000010^{-11} *T4riaer*⁴ - 1.49974800010^{-14} *T4riaer*⁵

```
eq34rO2 := 582.1268939- 0.8239700000T4riO2
```

```
-\ 0.0001527935000 T4 riO2^2 - 1.77363000010^{-8}\ T4 riO2^3
```

```
+ 3.25342500010^{-11} T4riO2^4 - 7.16450000010^{-15} T4riO2^5
```

eq34rN2 := 635.0752395- 1.076230000*T*4*riN2*

+ $0.0001629820000T4riN2^2$ - $2.64062000010^{-7}T4riN2^3$

+ 1.16534250010⁻¹⁰ $T4riN2^4$ - 1.77429600010⁻¹⁴ $T4riN2^5$

eq34rCO2 := 726.7742013 - 0.462360000074riCO2 $- 0.00080000000074riCO2^{2} + 4.1340000010^{-7} T4riCO2^{3}$

 $-1.19652250010^{-10} T4riCO2^{4} + 1.46559200010^{-14} T4riCO2^{5}$

```
eq34rHe := 2144.750027- 5.19000000074riHe
```

```
eq34rH2 := 8146.32855 - 13.63327000T4riH2
```

- $-0.001745000000T4riH2^{2} + 0.000001859403333T4riH2^{3}$
- 1.14196500010⁻⁹ *T4riH2*⁴ + 2.25706000010⁻¹³ *T4riH2*⁵

T4raer := 609.257707

T4rO2 := 632.335514'

```
T4rN2 := 604.360402(
```

T4rCO2 := -942.6830890810.58594864856.644970

T4rHe := 413.246633.

T4rH2 := -1798.689934573.15013984229.48545(

>

SURSA_RECE;T4aer:=609.2577079;T4O2:=632.3355147;T4N2:=604.3604020;T4CO2:=810.5859486;T4He:=413. 2466333;T4H2:=573.1501398;dh41aer:=int(cpaer,T=T4aer..T1);dh41O2:=int(cpO2,T=T4O2..T1);dh41N2:=int(cpN2,T=T4N2..T1);dh41CO2:=int(cpCO2,T=T4CO2..T1);dh41He:=int(cpHe,T=T4He..T1);dh41H2:=int(cpH2,T=T4H2 ..T1);

SURSA RECE

```
T4aer := 609.257707
```

- *T4O2* := 632.335514′
- T4N2 := 604.3604020
- *T4CO2* := 810.585948(
- *T4He* := 413.246633.
- *T4H2* := 573.1501398
- dh41aer := -324.140295'
- *dh41O2* := -327.2457269
- *dh41N2* := -327.775192(
- dh41CO2 := -532.063176'
- *dh41He* := -623.4053268

```
dh41H2 := -4038.959099
```

>

RANDAMENT;Eaer:=1+dh41aer/dh23aer;EO2:=1+dh41O2/dh23O2;EN2:=1+dh41N2/dh23N2;ECO2:=1+dh41CO 2/dh23CO2;EHe:=1+dh41He/dh23He;EH2:=1+dh41H2/dh23H2;

RANDAMENT

```
Eaer := 0.434928760'

EO2 := 0.430355691'

EN2 := 0.436108431'

ECO2 := 0.349842889'

EHe := -0.08725290(

EH2 := 0.443157080'.
```

PUTERI;Paer:=dh41aer+dh23aer;PO2:=dh41O2+dh23O2;PN2:=dh41N2+dh23N2;PCO2:=dh41CO2+dh23CO2;P He:=dh41He+dh23He;PH2:=dh41H2+dh23H2;

PUTERI

Paer := 249.487015

PO2 := 247.228066:

PN2 := 253.4982490

PCO2 := 286.297751(

PHe := -50.0287678

PH2 := 3214.359480

> GENERARE_ENTROPIE;ds12aer:=int(cpaer/T,T=T2taer..T2aer);ds23aer:=int(-

Raer/p,p=p2..p3);ds34aer:=int(cpaer/T,T=T4taer..T4aer);ds41aer:=int(-

Raer/p,p=p4..p1);dsqaer:=int(cpaer/T,T=T2aer..T3);Nirraer_int:=1+(ds12aer+ds23aer+ds34aer+ds41aer)/dsqae

r;

GENERARE_ENTROPIE

ds12aer := 0.0803040545

ds23aer := 0.00579914221

ds34aer := 0.0812765143:

ds41aer := 0.00579914214

dsqaer := 0.571043608.

Nirraer_int := 1.303267300

> ds12O2:=int(cpO2/T,T=T2tO2..T2O2);ds23O2:=int(-

RO2/p,p=p2..p3);ds34O2:=int(cpO2/T,T=T4tO2..T4O2);ds41O2:=int(-

RO2/p,p=p4..p1);dsqO2:=int(cpO2/T,T=T2O2..T3);NirrO2_int:=1+(ds12O2+ds23O2+ds34O2+ds41O2)/dsqO2;

ds12O2 := 0.0738685503:

ds23O2 := 0.00523428702

ds34O2 := 0.0721386018

ds41O2 := 0.00523428696

dsqO2 := 0.5808824942

NirrO2_int := 1.26937586

> ds12N2:=int(cpN2/T,T=T2tN2..T2N2);ds23N2:=int(-

RN2/p,p=p2..p3);ds34N2:=int(cpN2/T,T=T4tN2..T4N2);ds41N2:=int(-

RN2/p,p=p4..p1);dsqN2:=int(cpN2/T,T=T2N2..T3);NirrN2_int:=1+(ds12N2+ds23N2+ds34N2+ds41N2)/dsqN2;

ds12N2 := 0.0827604852:

ds23N2 := 0.00600189447

ds34N2 := 0.0844582794

ds41N2 := 0.00600189439

dsqN2 := 0.576846956!

NirrN2_int := 1.310693419

> ds12CO2:=int(cpCO2/T,T=T2tCO2..T2CO2);ds23CO2:=int(-

RCO2/p,p=p2..p3);ds34CO2:=int(cpCO2/T,T=T4tCO2..T4CO2);ds41CO2:=int(-

RCO2/p,p=p4..p1);dsqCO2:=int(cpCO2/T,T=T2CO2..T3);NirrCO2_int:=1+(ds12CO2+ds23CO2+ds34CO2+ds41C

O2)/dsqCO2;

ds12CO2 := 0.0595716623

ds23CO2 := 0.00382994530

ds34CO2 := 0.0458416931

ds41CO2 := 0.00382994525

dsqCO2 := 0.910904234

NirrCO2_int := 1.12413296

> ds12He:=int(cpHe/T,T=T2tHe..T2He);ds23He:=int(-

RHe/p,p=p2..p3);ds34He:=int(cpHe/T,T=T4tHe..T4He);ds41He:=int(-

RHe/p,p=p4..p1);dsqHe:=int(cpHe/T,T=T2He..T3);NirrHe_int:=1+(ds12He+ds23He+ds34He+ds41He)/dsqHe;

ds12He := 0.488023520:

ds23He := 0.0418196041:

ds34He := 0.739620661:

ds41He := 0.0418196036

dsqHe := 0.471109969

NirrHe_int := 3.78339129'

> ds12H2:=int(cpH2/T,T=T2tH2..T2H2);ds23H2:=int(-

RH2/p,p=p2..p3);ds34H2:=int(cpH2/T,T=T4tH2..T4H2);ds41H2:=int(-

RH2/p,p=p4..p1);dsqH2:=int(cpH2/T,T=T2H2..T3);NirrH2_int:=1+(ds12H2+ds23H2+ds34H2+ds41H2)/dsqH2;

```
ds12H2 := 1.13962191<sup>4</sup>
```

```
ds23H2 := 0.0842029291
```

ds34H2 := 1.21274522

ds41H2 := 0.0842029281

dsqH2 := 7.14349516

NirrH2_int := 1.352876699

> save

piC,piT,T1,T3,T2aer,T4aer,T2O2,T4O2,T2N2,T4N2,T2CO2,T4CO2,T2He,T4He,T2H2,T4H2,Paer,PO2,PN2,PCO2,P He,PH2,Eaer,EO2,EN2,ECO2,EHe,EH2,Nirraer_int,NirrO2_int,NirrN2_int,NirrCO2_int,NirrHe_int,NirrH2_int,"dat e brayton agenti de lucru";read "date brayton agenti de lucru";

- piC := 25
- piT := 0.0416493127: T1 := 293.13 T3 := 1273.15 T2aer := 770.5881744 T4aer := 609.2577079 T2O2 := 744.7098580 T4O2 := 632.3355147 T2N2 := 775.7479070 T4N2 := 604.3604020 T2CO2 := 589.4623522 T4CO2 := 810.5859480 T2He := 1162.67282 T4He := 413.2466333 T2H2 := 791.5362513T4H2 := 573.1501393

Paer := 249.487015 *PO2* := 247.228066: *PN2* := 253.4982490 *PCO2* := 286.297751(*PHe* := -50.0287678 *PH2* := 3214.35948(*Eaer* := 0.434928760! *EO2* := 0.430355691. *EN2* := 0.436108431' *ECO2* := 0.3498428892 EHe := -0.087252900*EH2* := 0.443157080. *Nirraer int* := 1.303267300 *NirrO2_int* := 1.269375868 *NirrN2_int* := 1.310693419 *NirrCO2_int* := 1.12413296 *NirrHe_int* := 3.78339129' *NirrH2_int* := 1.352876699 >

PROGRAM ARDERE CU RECIRCULARE GAZE DE ARDERE

> restart;

```
> p1:=0.94;T0:=273;T1:=293;T2:=1473;p0:=1;pv0s:=610.8/100000;
```

- *p1* := 0.94
- T0 := 273
- T1 := 293
- T2 := 1473
- $p\theta := 1$

pv0s := 0.00610800000

> mair:=4;10:=2500;u0:=10-610.8*206.3/1000;

mair := 4

l0 := 2500

u0 := 2373.991960

>

Molar_mass_in_kg_per_kmole;MCH4:=16;MC2H6:=30;MC3H8:=44;MC4H10:=58;MC02 :=44;MN2:=28;MC:=12;MH2:=2;MO2:=32;MH2O:=18;

Molar_mass_in_kg_per_kmole
MCH4 := 16
MC2H6 := 30
MC3H8 := 44
MC4H10 := 58
MC02 := 44
MN2 := 28
MC := 12
MH2 := 2
MH2 := 2
MH2 := 2
MH2 := 32
MH2 := 18
> Natural_gas_mole_composition_in_kmole_per_kmole_fuel;
rCH4f := 0.865;rC2H6f := 0.079;rC3H8f := 0.022;rC4H10f := 0.003;rC02f := 0.005;rN
2f := 0.026;sumrif := rCH4f + rC2H6f + rC3H8f + rC4H10f + rC02f + rN2f;Mf := rCH4f * MCH4

+rC2H6f*MC2H6+rC3H8f*MC3H8+rC4H10f*MC4H10+rC02f*MC02+rN2f*MN2;

Natural_gas_mole_composition_in_kmole_per_kmole_fuel

rCH4f := 0.865

rC2H6f := 0.079

rC3H8f := 0.022

rC4H10f := 0.003

rCO2f := 0.005

rN2f := 0.026

sumrif := 1.000

Mf := 18.300

>

Natural_gas_mass_composition_in_kg_per_kg_fuel;gCH4f:=rCH4f*MCH4/Mf;gC2 H6f:=rC2H6f*MC2H6/Mf;gC3H8f:=rC3H8f*MC3H8/Mf;gC4H10f:=rC4H10f*MC4H10/Mf ;gCO2f:=rCO2f*MCO2/Mf;gN2f:=rN2f*MN2/Mf;sumgif:=gCH4f+gC2H6f+gC3H8f+gC4 H10f+gCO2f+gN2f;gCf:=MC*(rCH4f+2*rC2H6f+3*rC3H8f+4*rC4H10f)/Mf;gH2f:=MH 2*(2*rCH4f+3*rC2H6f+4*rC3H8f+5*rC4H10f)/Mf;sumgif_C_H2:=gCf+gH2f+gCO2f+ gN2f;

Natural_gas_mass_composition_in_kg_per_kg_fuel gCH4f := 0.756284153(gC2H6f := 0.129508196' gC3H8f := 0.0528961748(gC4H10f := 0.00950819672 gC02f := 0.0120218579; gN2f := 0.0397814207' sumgif := 1.0000000(gCf := 0.721967213 gH2f := 0.226229508; $sumgif_C_H2 := 1.0000000($

>

Dried_Air_Mole_composition_in_kmole_per_kmole_dair;rO2dair:=0.2059;rN2d air:=0.7809;rCO2dair:=0.0132;Mdair:=rO2dair*MO2+rN2dair*MN2+rCO2dair*MC O2;

Dried_Air_Mole_composition_in_kmole_per_kmole_dair

rO2dair := 0.2059

rN2dair := 0.7809

rCO2dair := 0.0132

Mdair:=29.0348

>

Dried_Air_Mass_composition_in_kg_per_kg_dair;gO2dair:=rO2dair*MO2/Mdair
;gN2dair:=rN2dair*MN2/Mdair;gCO2dair:=rCO2dair*MCO2/Mdair;sumgdair:=gO2
dair+gN2dair+gCO2dair;

Dried_Air_Mass_composition_in_kg_per_kg_dair gO2dair := 0.226927686 gN2dair := 0.753068731. gCO2dair := 0.0200035819

sumgdair := 1.00000000

> Humid_Air_Mass_composition_in_kg_per_kg_dair;phi1:=0.5;t1:=T1-

273.15;pvsH2O1:=-.4164460979e-18*t1^10+.2004215749e-

15*t1^9+.6588432820e-3*t1-.4117823023e-13*t1^8-.4560213564e-

4*t1^2+.4719547427e-11*t1^7+.6985705427e-5*t1^3-.3308562609e-9*t1^6-

```
.4022805689e-6*t1^4+.1465463358e-7*t1^5+.6108e-
```

2;x1:=MH2O*phi1*pvsH2O1/(p1-phi1*pvsH2O1)/Mdair;

Humid_Air_Mass_composition_in_kg_per_kg_dair

 $\phi 1 := 0.5$ t1 := 19.85

pvsH2O1 := 0.02315296992

x1 := 0.00773008459

```
>
```

Humid_Air_Mass_composition_in_kg_per_kg_air;R:=8.3145;g02air:=g02dair/(
1+x1);gN2air:=gN2dair/(1+x1);gC02air:=gC02dair/(1+x1);gH2Oair:=x1/(1+x1);sumgair:=g02air+gN2air+gC02air+gH2Oair;Rair:=R*(g02air/M02+gN2air/MN2
+gC02air/MC02+gH2Oair/MH2O);

Humid_Air_Mass_composition_in_kg_per_kg_air

```
R := 8.3145
```

gO2air := 0.225186972

gN2air := 0.747292099

gCO2air := 0.0198501386

gH2Oair := 0.00767078874

sumgair := 0.999999999:

Rair := 0.287709893(

>

Humid_Air_Mass_flow_rates_in_kg_per_sec;mO2air:=mair*gO2air;mN2air:=mai
r*gN2air;mCO2air:=mair*gCO2air;mH2Oair:=mair*gH2Oair;summair:=mO2air+mN
2air+mCO2air+mH2Oair;

Humid_Air_Mass_flow_rates_in_kg_per_sec

mO2air := 0.900747889(mN2air := 2.98916839(mCO2air := 0.0794005546(mH2Oair := 0.0306831549' summair := 3.999999999

>

Stoechiometric_relations_in_kg_per_kg_fuel;mO2min:=MO2*(gCf/MC+gH2f/MH2
/2);mairmin:=mO2min/gO2air;

Stoechiometric_relations_in_kg_per_kg_fuel

mO2min := 3.735081968

mairmin := 16.5865810:

> First_Flue_gases_mass_flow_rates_in_kg_per_sec;m02fg1:=mair*g02airmf1*m02min;mN2fg1:=mair*gN2air+mf1*gN2f;mC02fg1:=mair*gC02air+mf1*(MC02 *gCf/MC+gC02f);mH20fg1:=mair*gH20air+mf1*(MH20*gH2f/MH2);mfg1:=mC02fg1+ m02fg1+mN2fg1+mH20fg1;mfg_verif1:=mair+mf1*(gN2f+MC02*gCf/MC+gC02f+MH20 *gH2f/MH2-m02min);

First_Flue_gases_mass_flow_rates_in_kg_per_sec

mO2fg1 := 0.9007478896- 3.735081968*mf1*

mN2fg1 := 2.989168399+ 0.03978142077*mf1*

mCO2fg1 := 0.07940055460+ 2.659234973*mf1*

mH2Ofg1 := 0.03068315497+ 2.036065574*mf1*

mfg1 := 3.99999998+ 1.00000000*mf1*

mfg_verif1 := 4 + 1.00000000*mf1*

>

First_Flue_gases_mass_compozition_in_kg_per_kg;g02fg1:=m02fg1/mfg1;gN2f
g1:=mN2fg1/mfg1;gC02fg1:=mC02fg1/mfg1;gH20fg1:=mH20fg1/mfg1;

First_Flue_gases_mass_compozition_in_kg_per_kg

$$gO2fg1 := \frac{0.9007478896 - 3.735081968mf1}{3.99999998 + 1.00000000mf1}$$

 $gN2fg1 := \frac{2.989168399 + 0.03978142077mf1}{3.99999998 + 1.00000000mf1}$

 $gCO2fg1 := \frac{0.07940055460 + 2.659234973mf1}{3.99999998 + 1.000000000mf1}$

```
>
```

First_Dried_flue_gases_mass_composition_in_kg_per_kg;g02fgd1:=m02fg1/(m
fg1-mH2Ofg1);gN2fgd1:=mN2fg1/(mfg1-mH2Ofg1);gC02fgd1:=mC02fg1/(mfg1mH2Ofg1);

First_Dried_flue_gases_mass_composition_in_kg_per_kg

 $gO2fgd1 := \frac{0.9007478896 - 3.735081968mf1}{3.969316843 - 1.036065574mf1}$ $gN2fgd1 := \frac{2.989168399 + 0.03978142077mf1}{3.969316843 - 1.036065574mf1}$ $gCO2fgd1 := \frac{0.07940055460 + 2.659234973mf1}{3.969316843 - 1.036065574mf1}$

>

Heating_values_of_fuel_in_kJ_per_kg_fuel;HHV_CH4:=evalf(4.185*212790/MC
H4);HHV_C2H6:=evalf(4.185*372810/MC2H6);HHV_C3H8:=evalf(4.185*530570/MC
3H8);HHV_C4H10:=evalf(4.185*686310/MC4H10);HHV:=gCH4f*HHV_CH4+gC2H6f*HH
V C2H6+gC3H8f*HHV C3H8+gC4H10f*HHV C4H10;

```
Heating_values_of_fuel_in_kJ_per_kg_fuel
```

HHV_CH4 := 55657.8843

HHV_C2H6 := 52006.9950(

HHV C3H8 := 50464.4420⁴

HHV_C4H10 := 49520.8163

HHV := 51968.7377(

> cpO2:=0.82397+3.05587E-4*T+5.32089E-8*T^2-1.30137E-10*T^3+3.58225E-

```
14*T^4; cvO2:=0.56574+2.96923E-4*T+6.54515E-8*T^2-1.36918E-
```

10*T^3+3.71407E-14*T^4; cpH2O:=1.84336-2.31223E-4*T+1.1966E-6*T^2-

6.15263E-10*T^3+1.0015E-13*T^4; cvH2O:=1.38161-2.29361E-4*T+1.19327E-

6*T^2-6.13657E-10*T^3+9.99765E-14*T^4; cpN2:=1.07623-3.25964E-

4*T+7.92186E-7*T^2-4.66137E-10*T^3+8.87148E-14*T^4; cvN2:=0.77884-

3.22759E-4*T+7.86981E-7*T^2-4.62795E-10*T^3+8.79811E-

14*T^4; cpCO2:=0.46236+0.0016*T-1.2402E-6*T^2+4.78609E-10*T^3-7.32796E-14*T^4; cvCO2:=0.27337+0.0016*T-1.24189E-6*T^2+4.79536E-10*T^3-7.34111E- 14*T^4; cpCH4:=0.18537+0.00191*T-3.13681E-6*T^2+2.2951E-9*T^3; cpair:=g02air*cp02+gN2air*cpN2+gC02air*cpC02+gH2Oair*cpH2O; cvair: =g02air*cv02+gN2air*cvN2+gC02air*cvC02+gH2Oair*cvH2O; cpC2H6:=4.185*(1.6 2+42.1E-3*T-13.9E-6*T^2)/MC2H6; cpC3H8:=4.185*(0.12+64.47E-3*T-22.76E-6*T^2)/MC3H8; cpC4H10:=1.25*4.185*(0.12+64.47E-3*T-22.76E-6*T^2)/MC4H10;

 $cpO2 := 0.82397 + 0.000305587T + 5.3208910^{-8} T^{2}$ - 1.3013710⁻¹⁰ T³ + 3.5822510⁻¹⁴ T⁴

 $cvO2 := 0.56574 + 0.000296923T + 6.5451510^{-8} T^{2}$ - 1.3691810⁻¹⁰ T³ + 3.7140710⁻¹⁴ T⁴

 $cpH2O := 1.84336 - 0.000231223T + 0.0000011966T^{2}$ $- 6.1526310^{-10} T^{3} + 1.001510^{-13} T^{4}$

 $cvH2O := 1.38161 - 0.000229361T + 0.00000119327T^{2}$ $- 6.1365710^{-10} T^{3} + 9.9976510^{-14} T^{4}$

 $cpN2 := 1.07623 - 0.000325964T + 7.9218610^{-7} T^{2}$ $- 4.6613710^{-10} T^{3} + 8.8714810^{-14} T^{4}$

 $cvN2 := 0.77884 - 0.000322759T + 7.8698110^{-7} T^{2}$ - 4.6279510⁻¹⁰ T³ + 8.7981110⁻¹⁴ T⁴

 $cpCO2 := 0.46236 + 0.0016 T - 0.0000012402T^{2} + 4.7860910^{-10} T^{3} - 7.3279610^{-14} T^{4}$

 $cvCO2 := 0.27337 + 0.0016 T - 0.00000124189T^2 + 4.7953610^{-10} T^3$ - 7.3411110⁻¹⁴ T⁴

 $cpCH4 := 0.18537 + 0.00191 T - 0.00000313681T^{2} + 2.295110^{-9} T^{3}$ $cpair := 1.013123421 - 0.0001447895516T + 5.88537014410^{-7} T^{2}$ $- 3.72864752010^{-10} T^{3} + 7.36762487710^{-14} T^{4}$

```
cvair := 0.7254427276 - 0.0001443312173T + 5.87345142510^{-7} T^{2}
- 3.71863574310<sup>-10</sup> T<sup>3</sup> + 7.34208608410<sup>-14</sup> T<sup>4</sup>
cpC2H6 := 0.2259900000 + 0.005872949999T
- 0.0000019390500007<sup>2</sup>
cpC3H8 := 0.01141363636 + 0.006131976138T
- 0.0000021647863647<sup>2</sup>
cpC4H10 := 0.01082327586 + 0.005814804956T
```

```
-0.000002052814655T^2
```

```
>
```

```
cplw:=4.185;mlw1:=0;eqca1:=0.95*mf1*HHV+mf1*(gCH4f*int(cpCH4,T=T0..T1)+
gC2H6f*int(cpC2H6,T=T0..T1)+gC3H8f*int(cpC3H8,T=T0..T1)+gC4H10f*int(cpC
4H10,T=T0..T1))+mO2air*int(cpO2,T=T0..T1)+mN2air*int(cpN2,T=T0..T1)+mCO
2air*int(cpCO2,T=T0..T1)+mH2Oair*(int(cpH20,T=T0..T1)+10)+mlw1*int(cplw
,T=T0..T1)-mN2fg1*int(cpN2,T=T0..T2)-mCO2fg1*int(cpCO2,T=T0..T2)-
```

```
(mH2Ofg1+mlw1) * (int(cpH2O,T=T0..T2)+10) -
```

m02fg1*int(cp02,T=T0..T2)=0;mfv1:=solve(eqca1,mf1);Qfuel1:=mfv1*HHV;

```
cplw := 4.185

mlw1 := 0

eqca1 := 39886.26112mf1 - 5322.718235 = 0

mfv1 := 0.133447409
```

Qfuel1 := 6935.09343'

```
>
```

First_Flue_gases_mass_flow_rates_values_in_kg_per_sec;m02fgv1:=mair*g02
air-

mfv1*mO2min;mN2fgv1:=mair*gN2air+mfv1*gN2f;mCO2fgv1:=mair*gCO2air+mfv1*
(MCO2*gCf/MC+gCO2f);mH2Ofgv1:=mair*gH2Oair+mfv1*(MH2O*gH2f/MH2)+mlw1;mf
gv1:=mCO2fgv1+mO2fgv1+mN2fgv1+mH2Ofgv1;mfg_verifv:=mair+mlw1+mfv1*(gN2f
+MCO2*gCf/MC+gCO2f+MH2O*gH2f/MH2-

```
mO2min);coef_stoechiometric1:=mfgv1/mairmin;
```

```
First_Flue_gases_mass_flow_rates_values_in_kg_per_sec
mO2fgv1 := 0.402310875(
mN2fgv1 := 2.99447712'
mCO2fgv1 := 0.434268573;
mH2Ofgv1 := 0.302390832(
mfgv1 := 4.13344740;
mfg_verifv := 4.13344741(
coef_stoechiometric1 := 0.249204305;
```

```
>
```

```
First_Flue_gases_mass_compozition_values_in_kg_per_kg;g02fgv1:=m02fgv1/
mfgv1;gN2fgv1:=mN2fgv1/mfgv1;gC02fgv1:=mC02fgv1/mfgv1;gH20fgv1:=mH20fgv
1/mfgv1;sumgfgv1:=g02fgv1+gN2fgv1+gC02fgv1+gH20fgv1;
```

```
First_Flue_gases_mass_compozition_values_in_kg_per_kg

gO2fgv1 := 0.0973305901

gN2fgv1 := 0.724450278

gCO2fgv1 := 0.105062078

gH2Ofgv1 := 0.0731570532

sumgfgv1 := 1.00000000
```

```
>
```

First_Flue_gases_mole_compozition_values_in_kmole_per_kmole;r02fgv1:=g0
2fgv1/M02/(g02fgv1/M02+gN2fgv1/MN2+gC02fgv1/MC02+gH20fgv1/MH20);rN2fgv1
:=gN2fgv1/MN2/(g02fgv1/M02+gN2fgv1/MN2+gC02fgv1/MC02+gH20fgv1/MH20);rC0
2fgv1:=gC02fgv1/MC02/(g02fgv1/M02+gN2fgv1/MN2+gC02fgv1/MC02+gH20fgv1/MH
20);rH20fgv1:=gH20fgv1/MH20/(g02fgv1/M02+gN2fgv1/MN2+gC02fgv1/MC02+gH20
fgv1/MH20);sumrfgv1:=r02fgv1+rN2fgv1+rC02fgv1+rH20fgv1;

- First_Flue_gases_mole_compozition_values_in_kmole_per_kmole
- *rO2fgv1* := 0.0860008750.
- *rN2fgv1* := 0.731566894:
- rCO2 fgv1 := 0.0675144605
- *rH2Ofgv1* := 0.114917770
- *sumrfgv1* := 1.000000000

>

First_Dried_Flue_gases_mass_compozition_values_in_kg_per_kg;g02dfgv1:=m
02fgv1/(m02fgv1+mN2fgv1+mC02fgv1);gN2dfgv1:=mN2fgv1/(m02fgv1+mN2fgv1+mC
02fgv1);gC02dfgv1:=mC02fgv1/(m02fgv1+mN2fgv1+mC02fgv1);sumgdfgv1:=g02df
gv1+gN2dfgv1+gC02dfgv1;

First_Dried_Flue_gases_mass_compozition_values_in_kg_per_kg

gO2dfgv1 := 0.105013034.

gN2dfgv1 := 0.7816321860

gCO2dfgv1 := 0.113354779(

sumgdfgv1 := 0.999999999

> Rair:=int((cpair-cvair),T=T1..T2)/(T2-T1);RO2:=int((cpO2cvO2),T=T1..T2)/(T2-T1);RN2:=int((cpN2-cvN2),T=T1..T2)/(T2-

T1);RCO2:=int((cpCO2-cvCO2),T=T1..T2)/(T2-T1);RH2O:=int((cpH2O-

cvH2O),T=T1..T2)/(T2-T1);

Rair := 0.287646633

RO2 := 0.260118272

RN2 := 0.296756205

RCO2 := 0.189735137(

RH2O := 0.461693151.

```
>
```

Rfgv1:=g02fgv1*R02+gN2fgv1*RN2+gC02fgv1*RC02+gH20fgv1*RH20;Rdfgv1:=g02d fgv1*R02+gN2dfgv1*RN2+gC02dfgv1*RC02;

Rfgv1 := 0.294012658'

Rdfgv1 := 0.280777395

> Second Flue gases mass flow rates in kg per sec;mO2fg2:=mO2fgv1-

mf2*m02min;mN2fg2:=mN2fgv1+mf2*gN2f;mC02fg2:=mC02fgv1+mf2*(MC02*gCf/MC+ gC02f);mH2Ofg2:=mH2Ofgv1+mf2*(MH2O*gH2f/MH2);mfg2:=mC02fg2+m02fg2+mN2fg 2+mH2Ofg2;mfg_verif2:=mfgv1+mf2*(gN2f+MC02*gCf/MC+gC02f+MH2O*gH2f/MH2m02min);

Second_Flue_gases_mass_flow_rates_in_kg_per_sec mO2fg2 := 1.005721359- 3.735081968mf2

```
mN2fg2 := 3.435336272+ 0.03978142077mf2
mCO2fg2 := 0.1121605930+ 2.659234973mf2
mH2Ofg2 := 0.05464753373+ 2.036065574mf2
mfg2 := 4.607865758+ 1.00000000mf2
mfg_verif2 := 4.607865758+ 1.00000000mf2
```

```
mlw2:=0;eqca2:=0.95*mf2*HHV+mf2*(gCH4f*int(cpCH4,T=T0..T1)+gC2H6f*int(c
pC2H6,T=T0..T1)+gC3H8f*int(cpC3H8,T=T0..T1)+gC4H10f*int(cpC4H10,T=T0..T
1))+mN2fgv1*int(cpN2,T=T0..T9r)+mC02fgv1*int(cpC02,T=T0..T9r)+mlw2*int(
cplw,T=T0..T1)+mH20fgv1*(int(cpH20,T=T0..T9r)+10)+mO2fgv1*int(cpO2,T=T0
..T9r)-mN2fg2*int(cpN2,T=T0..T10r)-mC02fg2*int(cpC02,T=T0..T10r)-
(mH20fg2+mlw2)*(int(cpH20,T=T0..T10r)+10)-
```

m02fg2*int(cp02,T=T0..T10r)=0;mfv2:=solve(eqca2,mf2);Qfuel2:=mfv2*HHV;
mlw2:=0

eqca2 := 41349.22464mf2 - 354.7447349 = 0

mfv2 := 0.00857923547

Qfuel2 := 445.852038

```
>
```

Second_Flue_gases_mass_flow_rates_values_in_kg_per_sec;mO2fgv2:=mO2fgv1
_

mfv2*m02min;mN2fgv2:=mN2fgv1+mfv2*gN2f;mC02fgv2:=mC02fgv1+mfv2*(MC02*gC f/MC+gC02f);mH20fgv2:=mH20fgv1+mfv2*(MH20*gH2f/MH2)+mlw2;mfgv2:=mC02fgv 2+m02fgv2+mN2fgv2+mH20fgv2;mfg_verifv2:=mfgv1+mlw2+mfv2*(gN2f+MC02*gCf/ MC+gC02f+MH20*gH2f/MH2-m02min);coef_stoechiometric1:=mfgv2/mairmin;

Second_Flue_gases_mass_flow_rates_values_in_kg_per_sec

mO2fgv2 := 0.973677211 mN2fgv2 := 3.43567756(mCO2fgv2 := 0.134974796(mH2Ofgv2 := 0.0721154197.mfgv2 := 4.61644499

mfg verifv2 := 4.61644499.

coef stoechiometric1 := 0.278120026:

```
>
```

Second_Flue_gases_mass_compozition_values_in_kg_per_kg;g02fgv2:=m02fgv2
/mfgv2;gN2fgv2:=mN2fgv2/mfgv2;gC02fgv2:=mC02fgv2/mfgv2;gH20fgv2:=mH20fg
v2/mfgv2;

Second_Flue_gases_mass_compozition_values_in_kg_per_kg

gO2fgv2 := 0.210914938 gN2fgv2 := 0.7442258212 gCO2fgv2 := 0.0292378217

gH2Ofgv2 := 0.0156214186

```
>
```

Second_Flue_gases_mole_composition_values_in_kmole_per_kmole;r02fgv2:=g 02fgv2/M02/(g02fgv2/M02+gN2fgv2/MN2+gC02fgv2/MC02+gH20fgv2/MH20);rN2fgv 2:=gN2fgv2/MN2/(g02fgv2/M02+gN2fgv2/MN2+gC02fgv2/MC02+gH20fgv2/MH20);rC 02fgv2:=gC02fgv2/MC02/(g02fgv2/M02+gN2fgv2/MN2+gC02fgv2/MC02+gH20fgv2/M H20);rH20fgv2:=gH20fgv2/MH20/(g02fgv2/M02+gN2fgv2/MN2+gC02fgv2/MC02+gH2 0fgv2/MH20);sumrfgv2:=r02fgv2+rN2fgv2+rC02fgv2+rH20fgv2;

```
Second_Flue_gases_mole_compozition_values_in_kmole_per_kmole
```

rO2fgv2 := 0.189928928: rN2fgv2 := 0.765914794: rCO2fgv2 := 0.0191481179. rH2Ofgv2 := 0.02500815890sumrfgv2 := 1.00000000(

```
>
```

Second_Dried_Flue_gases_mass_compozition_values_in_kg_per_kg;g02dfgv2:=
m02fgv2/(m02fgv2+mN2fgv2+mC02fgv2);gN2dfgv2:=mN2fgv2/(m02fgv2+mN2fgv2+m
C02fgv2);gC02dfgv2:=mC02fgv2/(m02fgv2+mN2fgv2+mC02fgv2);sumgdfgv2:=g02d
fgv2+gN2dfgv2+gC02dfgv2;

```
Second_Dried_Flue_gases_mass_compozition_values_in_kg_per_k
```

g

gO2dfgv2 := 0.2142620150

```
gN2dfgv2 := 0.756036178!
gCO2dfgv2 := 0.0297018061.
```

sumgdfgv2 := 1.00000000

>

Rfgv2:=g02fgv2*R02+gN2fgv2*RN2+gC02fgv2*RC02+gH20fgv2*RH20;Rdfgv2:=g02d fgv2*R02+gN2dfgv2*RN2+gC02dfgv2*RC02;

Rfgv2 := 0.288480830.

Rdfgv2 := 0.285733467!

```
>
```

dh78t:=mCO2fgv1*int(cpCO2,T=T7r..T8)+mN2fgv1*int(cpN2,T=T7r..T8)+mH2Ofg v1*(int(cpH2O,T=T7r..T8)+10)+mO2fgv1*int(cpO2,T=T7r..T8);du78t:=mCO2fgv 1*int(cvCO2,T=T7r..T8)+mN2fgv1*int(cvN2,T=T7r..T8)+mH2Ofgv1*(int(cvH2O, T=T7r..T8)+u0)+mO2fgv1*int(cpO2,T=T7r..T8);k78t:=dh78t/du78t;eq78t:=T8-T7r*(p8/p7)^((k78t-1)/k78t)=0;T8t:=fsolve(eq78t,T8);

```
dh78t := 4.67848983478 - 5480.984425 - 0.000322819698778^{2} 
+ 9.00409432910^{-7} T8^{-3} - 4.28040110210^{-10} T8^{-4} 
+ 6.76092981610^{-14} T8^{-5}
```

```
du78t := 3.61042445178 - 4279.734220 - 0.000317263695578^{2} 
+ 8.94325281910^{-7} T8^{3} - 4.25121952510^{-10} T8^{4} 
+ 6.71003508310^{-14} T8^{5}
```

```
k78t := (4.67848983478 - 5480.984425 - 0.000322819698778^2)
```

```
+9.00409432910^{-7} T8^{3} - 4.28040110210^{-10} T8^{4}
```

- $+ 6.76092981610^{-14} T8^{5})/(3.610424451T8 4279.734220)$
- $-0.000317263695578^{2} + 8.94325281910^{-7}78^{3}$
- $-4.25121952510^{-10} T8^4 + 6.71003508310^{-14} T8^5$

```
eq78t := T8
- 1133.15
(((4.678489834 T8 - 5480.984425 0.3397513034 - 0.0003228196987 T8^{2} + 9.004094329 10^{-7} T8^{3} - 4.280401102 10^{-10} T8^{4} + 6.760929816 10^{-14} T8^{5}) / (3.610424451 T8 - 4279.734220 - 0.0003172636955 T8^{2} + 8.943252819 10^{-7} T8^{3} - 4.251219525 10^{-10} T8^{4} + 6.710035083 10^{-14} T8^{5}) - 1) (3.610424451 T8 - 4279.734220 - 0.0003172636955 T8^{2} + 8.943252819 10^{-7} T8^{3} - 4.251219525 10^{-10} T8^{4} + 6.710035083 10^{-14} T8^{5}) - 1) (3.610424451 T8 - 4279.734220 - 0.0003172636955 T8^{2} + 8.943252819 10^{-7} T8^{3} - 4.251219525 10^{-10} T8^{4} + 6.710035083 10^{-14} T8^{5})) / (4.678489834 T8 - 5480.984425 - 0.0003228196987 T8^{2} + 9.004094329 10^{-7} T8^{3} - 4.280401102 10^{-10} T8^{4} + 6.760929816 10^{-14} T8^{5}) = 0
```

```
T8t := 897.1723804
```

>

dh78t:=mCO2fgv1*int(cpCO2,T=T7r..T8t)+mN2fgv1*int(cpN2,T=T7r..T8t)+mH2O
fgv1*(int(cpH2O,T=T7r..T8t)+10)+mO2fgv1*int(cpO2,T=T7r..T8t);dh78r:=mCO
2fgv1*int(cpCO2,T=T7r..T8)+mN2fgv1*int(cpN2,T=T7r..T8)+mH2Ofgv1*(int(cp
H2O,T=T7r..T8)+10)+mO2fgv1*int(cpO2,T=T7r..T8);;eq78r:=dh78r/dh78tetat1=0;T8r:=fsolve(eq78r,T8);t8r:=T8r-273.15;

```
dh78t := -1131.20994
```

```
dh78r := 4.67848983478 - 5480.984425 - 0.000322819698778^{2} 
+ 9.00409432910^{-7} 78^{3} - 4.28040110210^{-10} 78^{4} 
+ 6.76092981610^{-14} 78^{5}
```

```
eq78r := -0.00413582807378 + 3.895240677 + 2.85375584810^{-7} T8^{2}
- 7.95970225810^{-10} T8^{3} + 3.78391397010^{-13} T8^{4}
- 5.97672418310^{-17} T8^{5} = 0
```

T8r := 907.921882

```
t8r := 634.771882
```

>

```
cpfgv1:=gN2fgv1*cpN2+gO2fgv1*cpO2+gCO2fgv1*cpCO2+gH2Ofgv1*cpH2O;Pt1:=-
etam*mfgv1*int(cpfgv1,T=T7r..T8r);Pc12:=-
```

```
mair*(int(cpair,T=T1..T2r)+int(cpair,T=T3r..T4r));
```

```
cpfgv1 := 1.015326852 - 0.0001401167985T + 5.86221136010^{-7} T^{2}
```

```
-3.71573420510^{-10} T^3 + 7.33629208310^{-14} T^4
```

Pt1 := 1199.15559:

```
Pc12 := -1199.02223(
```

>

```
dh1011t:=mCO2fgv2*int(cpCO2,T=T10r..T11)+mN2fgv2*int(cpN2,T=T10r..T11)+
mH2Ofgv2*(int(cpH2O,T=T10r..T11)+10)+mO2fgv2*int(cpO2,T=T10r..T11);du10
11t:=mCO2fgv2*int(cvCO2,T=T10r..T11)+mN2fgv2*int(cvN2,T=T10r..T11)+mH2O
fgv2*(int(cvH2O,T=T10r..T11)+u0)+mO2fgv2*int(cpO2,T=T10r..T11);k1011t:=
dh1011t/du1011t;eq1011t:=T11-T10r*(p11/p10)^((k1011t-
```

```
1)/k1011t)=0;T11t:=fsolve(eq1011t,T11);
```

```
dh1011t := 4.695201706T11 - 5495.385028 - 0.0003115395871T11^{2} 
+ 8.97467176910^{-7} T11^{3} - 4.26994415610^{-10} T11^{4} 
+ 6.74012920610^{-14} T11^{5}
```

```
du1011t := 3.614657373T11 - 4276.794476 - 0.0003059667744T11^{2} 
+ 8.91350192510^{-7} T11^{3} - 4.24063672210^{-10} T11^{4} 
+ 6.68910884810^{-14} T11^{5}
```

```
k1011t := (4.695201706T11 - 5495.385028 - 0.0003115395871T11^2)
      + 8.97467176910^{-7} T11^{3} - 4.26994415610^{-10} T11^{4}
     + 6.74012920610^{-14} T11^{5})/(3.614657373T11 - 4276.794476)
      -0.0003059667744T11^{2} + 8.91350192510^{-7} T11^{3}
     -4.24063672210^{-10} T11^4 + 6.68910884810^{-14} T11^5
eq1011t := T11
      -1138.15
                     ((((4.695201706 T11 – 5495.385028
     0.3522723927
     -0.0003115395871 T11^{2} + 8.974671769 10^{-7} T11^{3} - 4.269944156 10^{-10} T11^{4}
     + 6.740129206 10^{-14} T11^{5}) / (3.614657373 T11 - 4276.794476)
     -0.0003059667744 T11^{2} + 8.913501925 10^{-7} T11^{3} - 4.240636722 10^{-10} T11^{4}
     + 6.689108848 10^{-14} T11^{5} - 1 (3.614657373 T11 - 4276.794476)
     - 0.0003059667744 T11<sup>2</sup> + 8.913501925 10<sup>-7</sup> T11<sup>3</sup> - 4.240636722 10<sup>-10</sup> T11<sup>4</sup>
     + 6.689108848 10<sup>-14</sup> T11^{5})) / (4.695201706 T11 - 5495.385028
     -0.0003115395871 T11^{2} + 8.974671769 10^{-7} T11^{3} - 4.269944156 10^{-10} T11^{4}
     + 6.740129206 10^{-14} T11^{5})
```

= 0

```
T11t := 901.2204334
```

>

dh1011t:=mCO2fgv2*int(cpCO2,T=T10r..T11t)+mN2fgv2*int(cpN2,T=T10r..T11t
)+mH2Ofgv2*(int(cpH2O,T=T10r..T11t)+10)+mO2fgv2*int(cpO2,T=T10r..T11t);
dh1011r:=mCO2fgv2*int(cpCO2,T=T10r..T11)+mN2fgv2*int(cpN2,T=T10r..T11)+
mH2Ofgv2*(int(cpH2O,T=T10r..T11)+10)+mO2fgv2*int(cpO2,T=T10r..T11);eq10
11r:=dh1011r/dh1011t-etat2=0;T11r:=fsolve(eq1011r,T11);t11r:=T11r273.15;

dh1011t := -1101.68980!

```
dh1011r := 4.695201706T11 - 5495.385028 - 0.0003115395871T11^{2} 
+ 8.97467176910^{-7} T11^{3} - 4.26994415610^{-10} T11^{4} 
+ 6.74012920610^{-14} T11^{5}
```

```
eq1011r := -0.004261818225T11 + 4.038141837 
+ 2.82783397410^{-7} T11^{2} - 8.14627828610^{-10} T11^{3}
```

```
+ 3.87581342910^{-13} T11^4 - 6.11799179010^{-17} T11^5 = 0
```

T11r := 911.617594'

t11r := 638.467594'

>

```
cpfgv2:=gN2fgv2*cpN2+gO2fgv2*cpO2+gCO2fgv2*cpCO2+gH2Ofgv2*cpH2O;Pel:=-
etam*etael*mfgv2*int(cpfgv2,T=T10r..T11r);DP:=100*(Pel-1200)/1200;
```

 $cpfgv2 := 1.017060035 - 0.0001349694787T + 5.83219671210^7 T^2$

 $-3.69976825110^{-10} T^3 + 7.30012944410^{-14} T^4$

Pel := 1202.47868:

DP := 0.2065571

> eqrec:=mfgv2*int(cpfgv2,T=T12r..T11r)-

```
mair*int(cpair,T=T4r..T5)=0;T5r:=fsolve(eqrec,T5);t5r:=T5r-273.15;
```

 $eqrec := 4094.222169 - 4.663167775T5 + 0.0003331617204T5^{2}$

 $-9.03107001410^{-7} T5^{3} + 4.28998841410^{-10} T5^{4}$

 $- 6.78000058210^{-14} T5^5 = 0$

T5r := 852.022832⁴

t5r := 578.872832⁴

```
> t1:=T1-
```

```
273.15;t13:=90;T13:=t13+273.15;T13r:=T13;saturation_pressure_of_water_v
apor;p_in_bar;t_in_degrees_Celsius; pvsH2O1:=-.4164460979e-
18*t1^10+.2004215749e-15*t1^9+.6588432820e-3*t1-.4117823023e-13*t1^8-
.4560213564e-4*t1^2+.4719547427e-11*t1^7+.6985705427e-5*t1^3-
.3308562609e-9*t1^6-.4022805689e-6*t1^4+.1465463358e-7*t1^5+.6108e-
2;xsfqv21:=Rdfqv2*pvsH2O1/(p1-pvsH2O1)/RH2O;pvsH2O13:=-.4164460979e-
```
18*t13^10+.2004215749e-15*t13^9+.6588432820e-3*t13-.4117823023e-13*t13^8-.4560213564e-4*t13^2+.4719547427e-11*t13^7+.6985705427e-5*t13^3-.3308562609e-9*t13^6-.4022805689e-6*t13^4+.1465463358e-7*t13^5+.6108e-2;xsfqv213:=Rdfqv2*pvsH2013/(p12-pvsH2013)/RH20;

t1 := 25.00

t13 := 90

T13 := 363.15

T13r := 363.15

saturation_pressure_of_water_vapor

p_in_bar

t_in_degrees_Celsius

pvsH2O1 := 0.031672113(

xsfgv21 := 0.0215836565

pvsH2O13 := 0.7011001(

xsfgv213 := 1.78135895:

> LHV:=HHV-mH2Ofgv2*10/(mfv1+mfv2);

LHV := 41005.61149

> xfgv2:=mH2Ofgv2/(mO2fgv2+mCO2fgv2+mN2fgv2);dxfgv2:=xfgv2-xsfgv21;

xfgv2 := 0.0158693199

 $dxfgv2 := -0.0057143366^{\circ}$

```
> mH2Ofgv2 cond:=(mN2fgv2+mCO2fgv2+mO2fgv2)*(xfgv2-xsfgv21);
```

```
mH2Ofgv2\_cond := -0.0259678291
```

>

Qfuel:=Qfuel1+Qfuel2;Q:=Qfuel+mair*int(cpair,T=T5r..T6r)+mfgv1*int(cpfg v1,T=T8r..T9r);Q0:=mN2fgv2*int(cpN2,T=T12r..T1)+mO2fgv2*int(cpO2,T=T12r ..T1)+mCO2fgv2*int(cpCO2,T=T12r..T1)+mH2Ofgv2*(int(cpH2O,T=T12r..T1))+m air*int(cpair,T=T2r..T3r);Q0rec:=mfgv2*int(cpfgv2,T=T12r..T1)+mair*int(cpair,T=T2r..T3r);P:=mfgv2*int(cpfgv2,T=T11r..T10r);eft:=P/Q;efel:=Pel/ Q;

Qfuel := 854.625601Q := 2908.602149

```
Q0 := -1542.24136

Q0rec := -1542.24136

P := 1226.89387

eft := 0.421815638

efel := 0.413421507
```

h1:=int(cpair,T=T0..T1);h2t:=int(cpair,T=T0..T2t);h2r:=int(cpair,T=T0.. T2r);h3r:=int(cpair,T=T0..T3r);h4t:=int(cpair,T=T0..T4t);h4r:=int(cpair ,T=T0..T4r);h5r:=int(cpair,T=T0..T5r);h6r:=int(cpair,T=T0..T6r);h7r:=in t(cpfgv1,T=T0..T7r);h8t:=int(cpfgv1,T=T0..T8t);h8r:=int(cpfgv1,T=T0..T8 r);h9r:=int(cpfgv1,T=T0..T9r);h10r:=int(cpfgv2,T=T0..T10r);h11t:=int(cp fgv2,T=T0..T11t);h11r:=int(cpfgv2,T=T0..T11r);h12r:=int(cpfgv2,T=T0..T1 2r);

```
___,
```

```
h1 := 25.3056305?
```

```
h2t := 139.064322
```

```
h2r := 159.139385:
```

h3r := 26.31928429

h4t := 132.850815′

h4r := 153.1425360

h5r := 615.046771(

h6r := 869.402192'

h7r := 943.5364544

h8t := 668.391985:

h8r := 680.666756

h9r := 872.4999519

h10r := 953.202657.

h11t := 675.504480.

h11r := 687.4367109

h12r := 227.1778990

>

Final_1_Flue_gases_mass_compozition_values_in_kg_per_kg;g02fgv1:=m02fgv

/(mfgv-mH2Ofgv+mH2Ofg_rest1);gN2fgv1:=mN2fgv/(mfgvmH2Ofgv+mH2Ofg_rest1);gCO2fgv1:=mCO2fgv/(mfgvmH2Ofgv+mH2Ofg_rest1);gH2Ofgv1:=mH2Ofg_rest1/(mfgvmH2Ofgv+mH2Ofg_rest1);sumfg1:=gO2fgv1+gN2fgv1+gCO2fgv1+gH2Ofgv1;

Final_1_Flue_gases_mass_compozition_values_in_kg_per_kg

$$gO2fgv1 := \frac{mO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

$$gN2fgv1 := \frac{mN2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

$$gCO2fgv1 := \frac{mCO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

$$gH2Ofgv1 := \frac{mH2Ofg_rest1}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

$$sumfg1 := \frac{mO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

$$+ \frac{mN2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

$$+ \frac{mN2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

$$+ \frac{mCO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

$$+ \frac{mL2Ofg_rest1}{mfgv - mH2Ofgv + mH2Ofg_rest1}$$

>

Final_1_Flue_gases_mole_compozition_values_in_kmole_per_kmole;r02fgv1:=
g02fgv1/M02/(g02fgv1/M02+gN2fgv1/MN2+gC02fgv1/MC02+gH20fgv1/MH20);rN2fg
v1:=gN2fgv1/MN2/(g02fgv1/M02+gN2fgv1/MN2+gC02fgv1/MC02+gH20fgv1/MH20);r
C02fgv1:=gC02fgv1/MC02/(g02fgv1/M02+gN2fgv1/MN2+gC02fgv1/MC02+gH20fgv1/
MH20);rH20fgv1:=gH20fgv1/MH20/(g02fgv1/M02+gN2fgv1/MN2+gC02fgv1/MC02+gH
20fgv1/MH20);sumrfg1:=r02fgv1+rN2fgv1+rC02fgv1+rH20fgv1;

Final_1_Flue_gases_mole_compozition_values_in_kmole_per_kmol

е

$$rO2fgv1 := \frac{1}{32} mO2fgv \left/ \left((mfgv - mH2Ofgv + mH2Ofg_rest1) \left(\frac{1}{32} \frac{mO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{28} \frac{mN2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{44} \frac{mCO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Ofgv + mH2Ofg_rest1} \right) \right)$$

$$rN2fgv1 := \frac{1}{28} mN2fgv \left/ \left((mfgv - mH2Ofgv + mH2Ofg_rest1) \left(\frac{1}{32} \frac{mO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{28} \frac{mN2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{44} \frac{mCO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Ofgv + mH2Ofg_rest1} \right) \right)$$

$$rCO2fgv1 := \frac{1}{44} mCO2fgv \left/ \left((mfgv - mH2Ofgv + mH2Ofg_rest1) \left(\frac{1}{32} \frac{mO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{28} \frac{mN2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{44} \frac{mCO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Ofgv + mH2Ofg_rest1} \right) \right)$$

$$rH2Ofgv1 := \frac{1}{18} mH2Ofg_rest1 / \left((mfgv - mH2Ofgv + mH2Ofg_rest1) \left(\frac{1}{32} \frac{mO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{28} \frac{mN2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{44} \frac{mCO2fgv}{mfgv - mH2Ofgv + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Ofgv + mH2Ofg_rest1} \right) \right)$$

$$sumrfg1 := \frac{1}{32} mO2fgv \left/ \left((mfgv - mH2Ofgv + mH2Ofg_rest1) \left(\frac{1}{32} \frac{mO2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{28} \frac{mN2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{28} \frac{mN2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{44} \frac{mCO2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} \right) \right) + \frac{1}{28} mN2fgv / \left((mfgv - mH2Ofg_rest1) \right) + \frac{1}{28} mN2fgv / \left((mfgv - mH2Ofg_v + mH2Ofg_rest1) \right) + \frac{1}{28} mN2fgv / \left((mfgv - mH2Ofg_v + mH2Ofg_rest1) + \frac{1}{28} \frac{mN2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{28} \frac{mN2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{44} \frac{mCO2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{18} \frac{mN2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{18} \frac{mN2fgv}{mfgv - mH2Ofg_v + mH2Ofg_rest1} + \frac{1}{18} \frac{mH2Ofg_rest1}{mfgv - mH2Of$$

p0N2:=rN2air*p0;p0O2:=rO2air*p0;p0CO2:=rCO2air*p0;p0H2O:=pv0;p4tN2:=rN2 fgv*p4t;p4t02:=r02fgv*p4t;p4tC02:=rC02fgv*p4t;p4tH20:=rH20fgv*p4t;sump4 t:=p4tN2+p4tO2+p4tCO2+p4tH2O=p3r; p4rN2:=rN2fgv*p4r; p4rO2:=rO2fgv*p4r; p4rO2:=rO2fgv*prCO2:=rCO2fgv*p4r;p4rH2O:=rH2Ofgv*p4r;sump4r:=p4rN2+p4rO2+p4rCO2+p4rH2O=p4r;p5tN2:=rN2fgv*p5t;p5tO2:=rO2fgv*p5t;p5tCO2:=rCO2fgv*p5t;p5tH2O:=rH 20fgv*p5t;sump5t:=p5tN2+p5tO2+p5tCO2+p5tH2O=p5t;p5rN2:=rN2fgv*p5r;p5rO2 :=r02fgv*p5r;p5rC02:=rC02fgv*p5r;p5rH20:=rH20fgv*p5r;sump5r:=p5rN2+p5r0 2+p5rC02+p5rH20=p5r;p6tN2:=rN2fgv*p6t;p6t02:=r02fgv*p6t;p6tC02:=rC02fgv *p6t;p6tH20:=rH2Ofgv*p6t;sump6t:=p6tN2+p6tO2+p6tCO2+p6tH2O=p6t;p6rN2:=r N2fgv*p6r;p6rO2:=rO2fgv*p6r;p6rCO2:=rCO2fgv*p6r;p6rH2O:=rH2Ofgv*p6r;sum p6r:=p6rN2+p6rO2+p6rCO2+p6rH2O=p6r;p7tN2:=rN2fgv*p7t;p7tO2:=rO2fgv*p7t; p7tC02:=rC02fgv*p7t;p7tH20:=rH20fgv*p7t;sump7t:=p7tN2+p7t02+p7tC02+p7tH 20=p7t;p7rN2:=rN2fgv*p7r;p7rO2:=rO2fgv*p7r;p7rCO2:=rCO2fgv*p7r;p7rH2O:= rH2Ofgv*p7r;sump7r:=p7rN2+p7rO2+p7rCO2+p7rH2O=p7r;p1N2:=rN2fgv1*p1;p1O2 :=r02fgv1*p1;p1C02:=rC02fgv1*p1;p1H20:=rH20fgv1*p1;sump1fg:=p1N2+p102+p 1CO2+p1H2O=p1;

p0N2 := 0.7809 p0O2 := 0.2059 p0CO2 := 0.0132 p0H2O := 0.00610800000 p4tN2 := 3.39350615' p4tO2 := 0.761208722 p4tCO2 := 0.126268502(p4tH2O := 0.129016617:

sump4t := 4.41000000 = 4.410

p4rN2 := 3.35957109(

p4rO2 := 0.753596635

p4rCO2 := 0.125005817(

p4rH2O := 0.127726451.

sump4r := 4.365900000= 4.36590

p5tN2 := 0.8306822790

p5tO2 := 0.1863331220

- $p5tCO2 := 0.0309087423^{\circ}$
- *p5tH2O* := 0.0315814420
- *sump5t* := 1.079505586= 1.079505580
- p5rN2 := 0.8306822790
- *p5rO2* := 0.186333122(
- *p5rCO2* := 0.0309087423[°]
- *p5rH2O* := 0.0315814420(
- *sump5r* := 1.079505586= 1.079505586
- *p6tN2* := 0.830682279(
- *p6tO2* := 0.1863331220
- $p6tCO2 := 0.0309087423^{\circ}$
- *p6tH2O* := 0.0315814420(
- *sump6t* := 1.079505586= 1.079505586
- *p6rN2* := 0.805761811(
- *p6rO2* := 0.180743128⁴
- *p6rCO2* := 0.0299814801
- *p6rH2O* := 0.0306339987(
- *sump6r* := 1.047120419= 1.047120419
- p7tN2 := 0.805761811(
- p7tO2 := 0.180743128
- *p7tCO2* := 0.0299814801
- *p7tH2O* := 0.0306339987(
- *sump7t* := 1.047120419= 1.047120419
- p7rN2 := 0.7695025300
- *p7rO2* := 0.1726096870
- p7rCO2 := 0.0286323135
- *p7rH2O* := 0.0292554688
- *sump7r* := 0.9999999999 1
- *p1N2* := 0.774159948

p1O2 := 0.173654408

p1CO2 := 0.0288056107

p1H2O := 0.0233800317

sump1fg :=1.00000000=1

> T7t:=T7r;s1:=int(cpair/T,T=T0..T1)-

Rair*int(1/p,p=p0..p1)/1000;s2t:=int(cpair/T,T=T0..T2t)-

Rair*int(1/p,p=p0..p2t)/1000;s2r:=int(cpair/T,T=T0..T2r)-

Rair*int(1/p,p=p0..p2r)/1000;Ds12t_in_proc:=100*(s2t-

s1)/s1;s3t:=int(cpair/T,T=T0..T3t)-

Rair*int(1/p,p=p0..p3t)/1000;s3r:=int(cpair/T,T=T0..T3r)-

Rair*int(1/p,p=p0..p3r)/1000;s4t:=gN2fgv*(int(cpN2/T,T=T0..T4t)-

RN2*int(1/p,p=p0N2..p4tN2)/1000)+g02fgv*(int(cp02/T,T=T0..T4t)-

RO2*int(1/p,p=p002..p4t02)/1000)+gCO2fgv*(int(cpCO2/T,T=T0..T4t)-

RCO2*int(1/p,p=p0CO2..p4tCO2)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T4 t)-

```
RH2O*int(1/p,p=p0H2O..p4tH2O)/1000);s4r:=gN2fgv*(int(cpN2/T,T=T0..T4r)-
RN2*int(1/p,p=p0N2..p4rN2)/1000)+gO2fgv*(int(cpO2/T,T=T0..T4r)-
RO2*int(1/p,p=p0O2..p4rO2)/1000)+gCO2fgv*(int(cpCO2/T,T=T0..T4r)-
RCO2*int(1/p,p=p0CO2..p4rCO2)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T4
```

r)-

```
RH2O*int(1/p,p=p0H2O..p4rH2O)/1000);s5t:=gN2fgv*(int(cpN2/T,T=T0..T5t) -
RN2*int(1/p,p=p0N2..p5tN2)/1000)+gC2fgv*(int(cpC2/T,T=T0..T5t) -
RO2*int(1/p,p=p0CO2..p5tCO2)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5
t)-RH2O*int(1/p,p=p0H2O..p5tH2O)/1000);Ds45t_in_proc:=100*(s5t-
s4r)/s5t;s5r:=gN2fgv*(int(cpN2/T,T=T0..T5r) -
RN2*int(1/p,p=p0N2..p5rN2)/1000)+gC2fgv*(int(cpC2/T,T=T0..T5r) -
RO2*int(1/p,p=p0O2..p5rO2)/1000)+gC2fgv*(int(cpC2/T,T=T0..T5r) -
RC02*int(1/p,p=p0O2..p5rC2)/1000)+gC2fgv*(int(cpC2/T,T=T0..T5r) -
RC02*int(1/p,p=p0C2..p5rC2)/1000)+gC2fgv*(int(cpC2/T,T=T0..T5r) -
RC02*int(1/p,p=p0C2..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5r) -
RC02*int(1/p,p=p0C2..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5r) -
RC02*int(1/p,p=p0C02..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5r) -
RC02*int(1/p,p=p0C02..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5) -
RC02*int(1/p,p=p0C02..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5) -
RC02*int(1/p,p=p0C02..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5) -
RC02*int(1/p,p=p0C02..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5) -
RC02*int(1/p,p=p0C02..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5) -
RC02*int(1/p,p=p0C02..p5rC02)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T5) -
RC02*int(1/p,p=p0C02..p5
```

```
RH2O*int(1/p,p=p0H2O..p5rH2O)/1000);s6t:=gN2fgv*(int(cpN2/T,T=T0..T6t)-
RN2*int(1/p,p=p0N2..p6tN2)/1000)+g02fgv*(int(cpO2/T,T=T0..T6t)-
```

```
R02*int(1/p,p=p002..p6t02)/1000)+gC02fgv*(int(cpC02/T,T=T0..T6t)-
RC02*int(1/p,p=p0C02..p6tC02)/1000)+gH20fgv*(10/T0+int(cpH20/T,T=T0..T6
t)-
```

```
RH2O*int(1/p,p=p0H2O..p6tH2O)/1000);s6r:=gN2fgv*(int(cpN2/T,T=T0..T6r)-
RN2*int(1/p,p=p0N2..p6rN2)/1000)+gO2fgv*(int(cpO2/T,T=T0..T6r)-
RO2*int(1/p,p=p0O2..p6rO2)/1000)+gCO2fgv*(int(cpCO2/T,T=T0..T6r)-
RCO2*int(1/p,p=p0CO2..p6rCO2)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T6
r)-
```

```
RH2O*int(1/p,p=p0H20..p6rH2O)/1000);s7t:=gN2fgv*(int(cpN2/T,T=T0..T7t)-
RN2*int(1/p,p=p0N2..p7tN2)/1000)+gO2fgv*(int(cpO2/T,T=T0..T7t)-
RO2*int(1/p,p=p0O2..p7tO2)/1000)+gCO2fgv*(int(cpCO2/T,T=T0..T7t)-
RCO2*int(1/p,p=p0CO2..p7tCO2)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T7
t)-
```

```
RH2O*int(1/p,p=p0H2O..p7tH2O)/1000);s7r:=gN2fgv*(int(cpN2/T,T=T0..T7r)-
RN2*int(1/p,p=p0N2..p7rN2)/1000)+gO2fgv*(int(cpO2/T,T=T0..T7r)-
RO2*int(1/p,p=p0O2..p7rO2)/1000)+gCO2fgv*(int(cpCO2/T,T=T0..T7r)-
RCO2*int(1/p,p=p0CO2..p7rCO2)/1000)+gH2Ofgv*(10/T0+int(cpH2O/T,T=T0..T7
r)-
```

```
RH2O*int(1/p,p=p0H2O..p7rH2O)/1000);s1fg:=gN2fgv1*(int(cpN2/T,T=T0..T1)
-RN2*int(1/p,p=p0N2..p1N2)/1000)+gO2fgv1*(int(cpO2/T,T=T0..T1)-
RO2*int(1/p,p=p0O2..p1O2)/1000)+gCO2fgv1*(int(cpCO2/T,T=T0..T1)-
RCO2*int(1/p,p=p0CO2..p1CO2)/1000)+gH2Ofgv1*(10/T0+int(cpH2O/T,T=T0..T1))-RH2O*int(1/p,p=p0H2O..p1H2O)/1000);
```

```
T7t := 363.15
```

```
s1 := 0.0709992849
```

```
s2t := 0.070620625(
```

```
s2r := 0.159945011'
```

```
Ds12t\_in\_proc := -0.533329258:
```

```
s3t := 0.823076726
```

s3r := 0.828860946

s4t := 1.36613204(

s4r := 1.36902736'

```
s5t := 1.36970293'
Ds45t in proc := 0.0493223736
s5r := 1.46624681:
s6t := 0.856963817
s6r := 0.865738582
s7t := 0.437752773:
s7r := 0.451017226!
s1fg := 0.199918188
> Tmq2r3t:=(T3t-T2r)/ln(T3t/T2r);Tmq2r3ts:=(h3t-h2r)/(s3t-
s2r); Tmq5r6t:=(T5r-T6t)/ln(T5r/T6t); Tmq5r6ts:=(h5r-h6t)/(s5r-
s6t); Tmq6r7r:=(T6r-T7t)/ln(T6r/T7t); Tmq6r7rs:=(h6r-h7r)/(s6r-s7t);
Tmq2r3t := 674.812909
Tmq2r3ts := 677.7828844
Tmq5r6t := 728.219340
Tmq5r6ts := 731.073804(
Tmq6r7r := 448.629194
Tmq6r7rs := 449.1586410
> DTairmax_fgin:=T5r-T3r;eps_rec:=(T3r-T2r)/(T5r-T2r);
DTairmax_fgin := 42.4937303
eps \ rec := 0.907217659
> etaelref:=0.35;etaQref:=0.95;HP:=-Qcog/P;HPel:=-
Qcog/Pel;Exfuel:=Qfuel*0.9875;ExQcog:=-Qcog*(1-
T0/Tmq6r7rs);etaexcog:=(P+ExQcog)/Exfuel;etaexelcog:=(Pel+ExQcog)/Exfue
1;Qfuelref:=Pel/etaelref-Qcog/etaQref;FESR:=1-Qfuel/Qfuelref;
etaelref := 0.35
etaQref := 0.95
HP := 1.45406872
HPel := 1.49873090
Exfuel := 371.305203<sup>4</sup>
```

ExQcog := 60.8083838*′*.

etaexcog := 0.451186810!

etaexelcog := 0.442621768:

Qfuelref := 459.171722

FESR := 0.181122768⁴

> save

DTairmax_fgin,p1,p2r,p3r,p4r,p5r,p6r,p7r,T1,T2r,T3r,T4r,T5r,T6r,T7r,eps _rec,P,Pel,Qfuel,Qcog,HP,HPel,etaHHV,etaelHHV,etacogHHV,etaelcogHHV,eta excog,etaexelcog,FESR,"date brayton Michel";read "date brayton Michel"; DTairmax fgin :=42.493730:

p1 := 1

- p2r := 4.5
- p3r := 4.410
- p4r := 4.36590
- *p5r* :=1.07950558(
- *p6r* := 1.047120419
- p7r := 1
- *T1* := 293.15
- *T2r* := 488.248924.
- *T3r* := 903.748924.
- T4r := 1223.15
- *T5r* := 946.242654(
- *T6r* := 546.572444
- T7r := 363.15
- *eps_rec* := 0.907217659⁴
- P := 106.719626
- *Pel* := 103.5393820
- *Qfuel* := 376.005269.
- *Qcog* := -155.177671.
- *HP* := 1.45406872
- *HPel* := 1.49873090
- *etaHHV* := 0.283824817
- *etaelHHV* := 0.275366837'

etacogHHV := 0.696525606 etaelcogHHV := 0.688067626 etaexcog := 0.451186810! etaexelcog := 0.442621768: FESR := 0.181122768-

TURBOMOTORUL DUBLUFLUX – GAZ PERFECT

cpaer =1.01027-1.73736E-4*T+6.08005E-7*T^2-3.80644E-10*T^3+7.49874E-14*T^4 [kJ/kgK]; cvaer =0.72301-1.73889E-4*T+6.09496E-7*T^2-3.81877E-10*T^3+7.52717E-14*T^4 [kJ/kgK]; cpO2 =0.82397+3.05587E-4*T+5.32089E-8*T^2-1.30137E-10*T^3+3.58225E-14*T^4 [kJ/kgK]; cvO2 =0.56574+2.96923E-4*T+6.54515E-8*T^2-1.36918E-10*T^3+3.71407E-14*T^4 [kJ/kgK]; cpH2O =1.84336-2.31223E-4*T+1.1966E-6*T^2-6.15263E-10*T^3+1.0015E-13*T^4 [kJ/kgK]; cvH2O =1.38161-2.29361E-4*T+1.19327E-6*T^2-6.13657E-10*T^3+9.99765E-14*T^4 [kJ/kgK]; cvN2 =0.77884-3.22759E-4*T+7.92186E-7*T^2-4.66137E-10*T^3+8.87148E-14*T^4 [kJ/kgK]; cpCO2 =0.46236+0.0016*T-1.2402E-6*T^2+4.78609E-10*T^3-7.32796E-14*T^4 [kJ/kgK]; cvCO2 =0.27337+0.0016*T-1.24189E-6*T^2+4.79536E-10*T^3-7.34111E-14*T^4 [kJ/kgK];

1

```
>
```

nC:=0.85/12;nH2:=0.15/2;Maer:=0.21*32+0.79*28;Hs:=(nC*94030+nH2*57800)*
4.185;
nC:=0.0708333333.
nH2:=0.0750000000
Maer:=28.84
Hs:=46015.9931:
>
 restart;
> nC:=0.85/12;nH2:=0.15/2;Maer:=0.21*32+0.79*28;Hs:=46000;
nC:=0.070833333.
nH2:=0.075000000

Maer := 28.84

Hs := 46000

> gO2:=0.21*32/Maer;gN2:=0.79*28/Maer;nO2:=gO2/32;nN2:=gN2/28;

gO2 := 0.233009708'

- *gN2* := 0.766990291.
- *nO2* := 0.00728155339
- *nN2* := 0.0273925104

> cp:=1.01027-1.73736E-4*T+6.08005E-7*T^(2)-3.80644E-10*T^(3)+7.49874E-14*T^(4); cv:=0.72301-1.73889E-4*T+6.09496E-7*T^(2)-3.81877E-10*T^(3)+7.52717E-14*T^(4); cpO2:=0.82397+3.05587E-4*T+5.32089E-8*T^2-1.30137E-10*T^3+3.58225E-14*T^4; cvO2:=0.56574+2.96923E-4*T+6.54515E-8*T^2-1.36918E-10*T^3+3.71407E-14*T^4; cpH20:=1.84336-2.31223E-4*T+1.1966E-6*T^2-6.15263E-10*T^3+1.0015E-13*T^4; cvH20:=1.38161-2.29361E-4*T+1.19327E-6*T^2-6.13657E-10*T^3+9.99765E-14*T^4; cpN2:=1.07623-3.25964E-4*T+7.92186E-7*T^2-4.66137E-10*T^3+8.87148E-14*T^4; cvN2:=0.77884-3.22759E-4*T+7.86981E-7*T^2-4.62795E-10*T^3+8.79811E-14*T^4; cpCO2:=0.46236+0.0016*T-1.2402E-6*T^2+4.78609E-10*T^3-7.32796E-14*T^4;

- $cp := 1.01027 0.000173736T + 6.0800510^{-7} T^2 3.8064410^{-10} T^3 + 7.4987410^{-14} T^4$
- $cv := 0.72301 0.000173889T + 6.0949610^{-7} T^2 3.8187710^{-10} T^3 + 7.5271710^{-14} T^4$

 $cpO2 := 0.82397 + 0.000305587T + 5.3208910^{-8} T^{2}$ - 1.3013710^{-10} T^{3} + 3.5822510^{-14} T^{4}

 $cvO2 := 0.56574 + 0.000296923T + 6.5451510^{-8} T^2$ - 1.3691810⁻¹⁰ T³ + 3.7140710⁻¹⁴ T⁴

$$cpH2O := 1.84336 - 0.000231223T + 0.0000011966T^{2} \\ - 6.1526310^{-10} T^{3} + 1.001510^{-13} T^{4}$$

$$cvH2O := 1.38161 - 0.000229361T + 0.00000119327T^{2} \\ - 6.1365710^{-10} T^{3} + 9.9976510^{-14} T^{4}$$

$$cpN2 := 1.07623 - 0.000325964T + 7.9218610^{7} T^{2} \\ - 4.6613710^{-10} T^{3} + 8.8714810^{-14} T^{4}$$

$$cvN2 := 0.77884 - 0.000322759T + 7.8698110^{7} T^{2} \\ - 4.6279510^{-10} T^{3} + 8.7981110^{-14} T^{4}$$

$$cpCO2 := 0.46236 + 0.0016 T - 0.0000012402T^{2} + 4.7860910^{-10} T^{3} \\ - 7.3279610^{-14} T^{4}$$

$$cvCO2 := 0.27337 + 0.0016 T - 0.00000124189T^{2} + 4.7953610^{-10} T^{3} \\ - 7.3411110^{-14} T^{4}$$

$$>$$

$$p1 := 1; p7 := 1; T0 := 273; T1 := 293; h1 := int (cp, T=T0..T1); T5 := 1573; efv1 := 0.9; efv \\ 2 := 0.9; piv1 := 1.1; piv2 := 1; pic := 35/piv1/piv2; efc := 0.8; eft := 0.85; dpca := 0.9$$

```
8;mv1:=350;mv2:=mv1/2;mc:=evalf(mv1/5);

p1:=1

p7:=1

70:=273

71:=293

h1:=20.0332308

75:=1573

efv1:=0.9

efv2:=0.9

piv1:=1.1

piv2:=1

pic:=31.8181818:

efc:=0.8
```

eft := 0.85

dpca := 0.98

mv1 := 350

mv2 := 175

mc := 70.

```
> p2:=p1*piv1;T2t:=T1*piv1^((1.401282041-1)/1.401282041);dh12t:=int(
cp, T=T1..T2t);du12t:=int( cv,
```

```
T=T1..T2t);km12t:=dh12t/du12t;dh12:=dh12t/efv1;h2t:=int( cp,
```

T=T0..T2t);

p2 := 1.1

T2t := 301.1072080

dh12t := 8.130881084

du12t := 5.80245863

km12t := 1.40128204

dh12 := 9.034312310

h2t := 28.16411190

> eq12:=dh12-int(cp, T=T1..T2)=0;

 $eq12 := 302.0148059 - 1.01027000072 + 0.0000868680000072^{2}$ $- 2.02668333310^{-7} T2^{-3} + 9.51610000010^{-11} T2^{-4}$ $- 1.49974800010^{-14} T2^{-5} = 0$

> T2eq:=evalf(solve(eq12,T2));

$$\begin{split} T2eq &:= -685.3537193 - 1788.099286I, -685.3537193 \\ &+ 1788.099286I, 302.00762233706.916233 - 2107.695718I, \\ 3706.916233 + 2107.695718I \end{split}$$

> T2:=302.0076223;ev1:=(T2t-T1)/(T2-T1);h2:=int(cp,T=T0..T2);c12:=(h2h1)/(T2-T1);du12:=int(cv,T=T1..T2); km12:=dh12/du12;

T2 := 302.007622.

ev1 := 0.9000386262

h2 := 29.0675430'

c12 :=1.002963042

du12 := 6.447289010

km12 := 1.40125753:

```
> p3:=p2*piv2;T3t:=T2*piv2^((1.397001058-1)/1.397001058);dh23t:=int(
```

```
cp, T=T2..T3t);du23t:=int( cv,
```

T=T2..T3t) ;km23t:=dh23t/du23t;dh23:=dh23t/efv2;

p3 := 1.1

T3t := 302.007622.

dh23t := 0.

du23t := 0.

```
km23t := Float(undefined )
```

dh23 := 0.

> eq23:=dh23-simplify(int(cp, T=T2..T3))=0;

 $eq23 := 302.0148059 - 1.010270000T3 + 0.00008686800000T3^2$

 $-2.0266833310^{-7} T3^{-3} + 9.51610000010^{-11} T3^{-4}$

 $-1.49974800010^{-14} T3^5 = 0$

> T3eq:=evalf(solve(eq23,T3));

```
T3eq := -685.3537193 - 1788.099286I, -685.3537193 
+ 1788.099286I, 302.00762233706.916233 - 2107.695718I, 
3706.916233 + 2107.695718I
```

```
> T3:=302.0076223;ev2:=(T3t-T2)/(T3-T2);h3:=int( cp,T=T0..T3);c23:=(h3-
h2)/(T3-T2);du23:=int(cv,T=T2..T3); km23:=dh23/du23;
```

T3 := 302.007622

ev2 := Float(undefined)

h3 := 29.0675430'

c23 := Float(undefined)

du23 := 0.

km23 := *Float*(*undefined*)

```
> p4:=p3*pic;T4t:=T3*pic^((1.379753301-1)/1.379753301);dh34t:=int( cp,
```

T=T3..T4t);du34t:=int(cv,

T=T3..T4t); km34t:=dh34t/du34t; dh34:=dh34t/efc; h4t:=int(cp, T=T0..T4t);

p4 := 35.0000000

T4t := 782.714504

dh34t := 501.392583: du34t := 363.392897{ km34t := 1.37975339? dh34 := 626.740729? h4t := 530.460126?

> eq34:=dh34-simplify(int(cp, T=T3..T4))=0;

 $eq34 := 928.7555350 - 1.01027000074 + 0.0000868680000074^{2}$ $- 2.02668333310^{-7} T4^{3} + 9.51610000010^{-11} T4^{4}$ $- 1.49974800010^{-14} T4^{5} = 0$

> T4eq:=evalf(solve(eq34,T4));

T4eq := -881.7301576 - 1789.018572I, -881.7301576+ 1789.018572I, 896.1614303 3606.215767 - 2089.579802I, 3606.215767 + 2089.579802I

> T4:=896.1614303;ec:=(T4t-T3)/(T4-T3);h4:=int(cp, T=T0..T4);c34:=(h4h3)/(T4-T3);du34:=int(cv,T=T3..T4); km34:=dh34/du34;

T4 := 896.161430ec := 0.809061350

h4 := 655.808272.

c34 := 1.05484593:

du34 :=456.190125.

km34 := 1.37385860:

>

```
> eqca:=mcb*Hs+mc*int(cp,T=T0..T4)-mc*nN2*28*int(cpN2,T=T0..T5)-
```

```
mcb*nC*44*int(cpCO2,T=T0..T5)-mcb*nH2*18*int(cpH2O,T=T0..T5)-(mc*nO2-
mcb*nC*44*int(cpCO2,T=T0..T5)-mcb*nH2*18*int(cpH2O,T=T0..T5)-(mc*nO2-
```

```
mcb*nC-mcb*nH2/2) *32*int(cpO2,T=T0..T5)=0;
```

```
eqca := 42126.69337mcb - 56455.88487= 0
```

> mcb:=solve(eqca,mcb);

mcb := 1.34014517:

> mga:=mc+mcb;mga:=mc*nN2*28+mcb*nC*44+mcb*nH2*18+(mc*nO2-mcb*nC-

mcb*nH2/2) *32;

mga := 71.3401451

```
mga := 71.3401451'
>
h5 := (mc*nN2*28*int(cpN2, T=T0..T5)+mcb*nC*44*int(cpCO2, T=T0..T5)+mcb*nH2
*18*int(cpH2O,T=T0..T5)+(mc*nO2-mcb*nC-
mcb*nH2/2) *32*int(cpO2,T=T0..T5))/mga;
h5 := 1507.61197_{4}
>
> p5:=p4*dpca;c45:=(h5-h4)/(T5-T4);
p5 := 34.3000000
c45 := 1.258503489
>
dh56ti:=(mc*nN2*28*int(cpN2,T=T5..T6t)+mcb*nC*44*int(cpCO2,T=T5..T6t)+m
cb*nH2*18*int(cpH2O,T=T5..T6t)+(mc*nO2-mcb*nC-
mcb*nH2/2) *32*int(cpO2,T=T5..T6t))/mga;dh56i:=dh56ti*eft;
dh56ti := 1.018496892T6t - 1784.992168 - 0.00005376798496T6t^2
    + 1.87540201410^{-7} T6t^{3} - 8.99167307110^{-11} T6t^{4}
    + 1.41744005110^{-14} T6t^{5}
dh56i := 0.8657223582T6t - 1517.243343 - 0.00004570278722T6t^2
    + 1.59409171210^{-7} T6t^3 - 7.64292211010^{-11} T6t^4
    + 1.20482404310^{-14} T6t^{5}
```

> eqI:=mv1*dh12+mv2*dh23+mc*dh34+mga*dh56i=0;

 $eqI := -61206.49995 + 61.76075871T6t - 0.003260443475T6t^{2}$ $+ 0.00001137227341T6t^{3} - 5.45247172910^{-9} T6t^{4}$ $+ 8.59523221310^{-13} T6t^{5} = 0$

> T6teqI:=evalf(solve(eqI,T6t));

T6teqI := -960.3467968 - 1808.727417I, -960.3467968+ 1808.727417I, 942.99684123660.648506 - 2146.163286I,3660.648506 + 2146.163286I

>

T6t:=942.9968412;dh56t:=(mc*nN2*28*int(cpN2,T=T5..T6t)+mcb*nC*44*int(cp

CO2,T=T5..T6t)+mcb*nH2*18*int(cpH2O,T=T5..T6t)+(mc*nO2-mcb*nCmcb*nH2/2)*32*int(cpO2,T=T5..T6t))/mga;dh56:=dh56t*eft;du56t:=(mc*nN2*2 8*int(cvN2,T=T5..T6t)+mcb*nC*44*int(cvCO2,T=T5..T6t)+mcb*nH2*18*int(cvH 20,T=T5..T6t)+(mc*nO2-mcb*nC-

mcb*nH2/2) *32*int(cvO2,T=T5..T6t))/mga;h6t:=(mc*nN2*28*int(cpN2,T=T0..T 6t)+mcb*nC*44*int(cpCO2,T=T0..T6t)+mcb*nH2*18*int(cpH2O,T=T0..T6t)+(mc* nO2-mcb*nC-

mcb*nH2/2) *32*int(cpO2,T=T0..T6t))/mga;dh56:=dh56t*eft;km56t:=dh56t/du5 6t;

- *T6t* := 942.9968412
- dh56t := -775.6355590
- *dh56* := -659.2902252
- *du56t* := -593.756753′.
- *h6t* := 731.976415:
- *dh56* := -659.290225*′*.

km56t := 1.30631871:

> eqIverificare:=mv1*dh12+mv2*dh23+mc*dh34+mga*dh56=0;

eqIverificare := -0.00002 = 0

> eq56:=dh56-

simplify((mc*nN2*28*int(cpN2,T=T5..T6)+mcb*nC*44*int(cpCO2,T=T5..T6)+mc b*nH2*18*int(cpH2O,T=T5..T6)+(mc*nO2-mcb*nC-

mcb*nH2/2) *32*int(cpO2,T=T5..T6))/mga)=0;

 $eq56 := 1125.701943 - 1.01849689276 + 0.0000537679849676^{2} - 1.87540201410^{-7} T6^{-3} + 8.99167307110^{-11} T6^{-4}$

 $-1.41744005110^{-14} T6^5 = 0$

> T6eq:=evalf(solve(eq56,T6));

$$\begin{split} T6eq &:= -989.8076466 - 1814.419979\mathrm{I}, -989.8076466 \\ &+ 1814.419979\mathrm{I}, 1041.3470563640.934247 - 2143.940324\mathrm{I}, \\ &3640.934247 + 2143.940324\mathrm{I} \end{split}$$

> T6:=1041.347056;p6:=p5*(T6t/T5)^((dh56t/du56t)/((dh56t/du56t)-1));et:=(T5-T6)/(T5-

T6t); h6:=(mc*nN2*28*int(cpN2,T=T0..T6)+mcb*nC*44*int(cpC02,T=T0..T6)+mc b*nH2*18*int(cpH20,T=T0..T6)+(mc*nO2-mcb*nC-

mcb*nH2/2) *32*int(cpO2,T=T0..T6))/(mc*nN2*28+mcb*nC*44+mcb*nH2*18+(mc*n O2-mcb*nC-mcb*nH2/2)*32);c56:=(h6-h5)/(T6-

T5) ; du56:= (mc*nN2*28*int(cvN2,T=T5..T6)+mcb*nC*44*int(cvCO2,T=T5..T6)+m cb*nH2*18*int(cvH2O,T=T5..T6)+(mc*nO2-mcb*nC-

mcb*nH2/2) *32*int(cvO2,T=T5..T6))/(mc*nN2*28+mcb*nC*44+mcb*nH2*18+(mc*n O2-mcb*nC-mcb*nH2/2)*32);km56:=dh56/du56;

- *T6* := 1041.34705(
- *p6* := 3.86925212:
- *et* := 0.843889330'
- *h6* := 848.321749
- c56 := 1.24007631'
- du56 := -505.806259:

km56 := 1.30344418(

> T7t:=T6*(p7/p6)^((1.331543213-

1) /1.331543213) ; dh67t:= (mc*nN2*28*int(cpN2,T=T6..T7t) +mcb*nC*44*int(cpC O2,T=T6..T7t) +mcb*nH2*18*int(cpH2O,T=T6..T7t) + (mc*nO2-mcb*nC-

mcb*nH2/2) *32*int(cpO2, T=T6..T7t))/mga; du67t:=(mc*nN2*28*int(cvN2,T=T6.

.T7t) +mcb*nC*44*int(cvCO2,T=T6..T7t) +mcb*nH2*18*int(cvH2O,T=T6..T7t) + (m c*nO2-mcb*nC-

```
mcb*nH2/2) *32*int(cvO2,T=T6..T7t))/mga;km67t:=dh67t/du67t;h7t:=(mc*nN2*
28*int(cpN2,T=T0..T7t)+mcb*nC*44*int(cpCO2,T=T0..T7t)+mcb*nH2*18*int(cp
H20,T=T0..T7t)+(mc*nO2-mcb*nC-mcb*nH2/2)*32*int(cpO2,T=T0..T7t))/mga;
```

T7t := 743.500454:

- dh67t := -345.3485920
- du67t := -259.359703

km67t := 1.331542980

h7t := 502.973157:

> dh67:=dh67t*0.98;

dh67 := -338.441620.

> eq67:=dh67-

```
simplify((mc*nN2*28*int(cpN2,T=T6..T7)+mcb*nC*44*int(cpC02,T=T6..T7)+mc
b*nH2*18*int(cpH20,T=T6..T7)+(mc*nO2-mcb*nC-
mcb*nH2/2)*32*int(cpO2,T=T6..T7))/mga)=0;
```

 $eq67 := 787.2603228 - 1.01849689277 + 0.0000537679848877^2$

 $-1.87540201610^{-7} T7^{3} + 8.99167307010^{-11} T7^{4}$

 $-1.41744004910^{-14} T7^5 = 0$

> T7eq:=evalf(solve(eq67,T7));

```
T7eq := -899.8723869- 1800.029561I, -899.8723869
```

```
+ 1800.029561I, 749.64459923696.850220- 2151.191691I,
```

3696.850220+ 2151.191691I

> T7:=749.6445992;eaj:=(T7-T6)/(T7t-

T6);h7:=(mc*nN2*28*int(cpN2,T=T0..T7)+mcb*nC*44*int(cpC02,T=T0..T7)+mcb
*nH2*18*int(cpH20,T=T0..T7)+(mc*nO2-mcb*nCmcb*nH2/2)*32*int(cpO2,T=T0..T7))/mga;c67:=(h7-h6)/(T7T6);du67:=(mc*nN2*28*int(cvN2,T=T6..T7)+mcb*nC*44*int(cvC02,T=T6..T7)+m
cb*nH2*18*int(cvH20,T=T6..T7)+(mc*nO2-mcb*nCmcb*nH2/2)*32*int(cvO2,T=T6..T7))/mga;km67:=dh67/du67;
T7:=749.644599?
eaj:=0.979371446
h7:=509.880129?
c67:=1.16022889?
du67:=-254.226445
km67:=1.33126048:
>
> w7:=sqrt(-2000*dh67);Ft7:=mga*w7/1000/9.81;

w7 := 804.121376

Ft7 := 5.847719939

> w7v2:=sqrt(2000*0.98*(dh12+dh23));Ft7v2:=(mv2-mc)*w7v2/1000/9.81;

w7v2 :=133.0685994

Ft7v2 := 1.42428164:

> w7v1:=sqrt(2000*0.98*dh12);Ft7v1:=(mv1-mv2-mc)*w7v1/1000/9.81;

w7v1 := 133.0685994

Ft7v1 := 1.42428164:

> Ft:=Ft7+Ft7v2+Ft7v1;

Ft := 8.69628322

> restart;

> cpN2:=evalf(1.742661-22878.11/T^(3/2)+478584.8/T²⁻

3.660212*10^7/T^3); cpO2:=evalf(1.670028+8.968502*T^(3/2)/10^7-

7966.8957/T^(3/2)+105683.9/T²);cpH2O:=evalf(6.382172-

2.5894729*T^0.25+0.3691933*T^0.5-1.6502632*T/10^3);cpC02:=evalf(-

0.1666681+0.136205*T⁰.5-1.8307308*T/10³⁺¹.079593*T²/10⁷);

$$cpN2 := 1.742661 - \frac{22878.11}{T^{3/2}} + \frac{4.78584810^5}{T^2} - \frac{3.66021200010^7}{T^3}$$
$$cpO2 := 1.670028 + 8.96850200010^7 T^{3/2} - \frac{7966.8957}{T^{3/2}} + \frac{1.05683910^5}{T^2}$$

 $cpH2O := 6.382172 - 2.5894729T^{0.25} + 0.3691933T^{0.5} - 0.001650263200T$

 $cpCO2 := -0.1666681 + 0.136205T^{0.5} - 0.001830730800T + 1.07959300010^{-7}T^2$

> cpaer:=0.21*cpO2+0.79*cpN2;

cpaer :=
$$1.72740807 + 1.88338542010^{-7} T^{3/2} - \frac{19746.75500}{T^{3/2}} + \frac{4.0027561110^5}{T^2} - \frac{2.89156748010^7}{T^3}$$

> haer:=cpaer*(T-T0);evalf(int(haer, T = T0..T1));

haer :=
$$\left(1.72740807 + 1.88338542010^{-7} T^{3/2} - \frac{19746.75500}{T^{3/2}} + \frac{4.0027561110^5}{T^2} - \frac{2.89156748010^7}{T^3}\right)(T - 273)$$

```
\frac{1}{TI^{5/2}} (2.93040293010^{-18} (1.83630078410^{10} TI^{6} - 7.01834159810^{12} TI^{5} - 1.34771602910^{22} TI^{3} - 3.67926475810^{24} TI^{2} + 2.94739001910^{17} TI^{9/2} - 1.60927495110^{20} TI^{7/2} - 1.34691020410^{27} \sqrt{TI} + 4.71576502910^{25} TI^{3/2} + 1.36594052310^{23} \ln(TI) TI^{5/2} - 4.53559294210^{23} TI^{5/2}))
```

> DUBLUFLUX OPTIMIZARE;

DUBLUFLUX

>

> restart;

>

m:=355;mga:=1.02*m/rm;k12:=1.4;k23:=1.37;k45:=1.305;c12:=1.005;c23:=1.0
55;c45:=1.24;efv:=0.9;efc:=0.8;eft:=0.85;T1:=293;T4:=1573;;pic:=35/piv;
m:=355

 $mga := \frac{362.10 \cdot 1}{rm}$ k12 := 1.4 k23 := 1.37 k45 := 1.305 c12 := 1.005 c23 := 1.055 c45 := 1.24 efv := 0.9 efc := 0.8 eft := 0.85 T1 := 293 T4 := 1573 $pic := \frac{35 \cdot 1}{piv}$

> T2t:=T1*(piv)^((k12-1)/k12);T2:=T1+(T2t-T1)/efv;

 $T2t := 293 piv^{0.2857142857}$

 $T2 := -32.5555555 + 325.5555555piv^{0.2857142857}$

> T3t:=T2*(pic)^((k23-1)/k23);

T3t := 2.612227984 (-32.5555555)

$$+ 325.555555555iv^{0.2857142857} \left(\frac{1}{piv}\right)^{0.2700729927}$$

> T3:=T2+(T3t-T2)/efc;

$$T3 := 8.13888888 - 81.3888889 piv^{0.2857142857} + 3.265284980 ($$
$$-32.5555555 + 325.555555 piv^{0.2857142857}) \left(\frac{1}{piv}\right)^{0.2700729927}$$

> p4:=p3*dpca;

p4 := p3 dpca

> p5:=p4*pit;T5t:=T4*pit^((k45-1)/k45);

p5 := p3 dpca pit

 $T5t := 1573 \, pit^{0.2337164751}$

>

> T5:=T4-(T4-T5t)*eft;

 $T5 := 235.95 + 1337.05 pit^{0.2337164751}$

> p6:=1;

p6 :=1

>

> T6t:=T5*(p6/p5)^((k56-1)/k56);

```
T6t := \left(235.95 + 1337.05pit^{0.2337164751}\right) \left(\frac{1}{p3 \ dpca \ pit}\right)^{\frac{k56 - 1}{k56}}
```

>

> T6:=T5-(T5-T6t)*efaj;

$$T6 := 235.95 + 1337.05pit^{0.2337164751} - \left(235.95 + 1337.05pit^{0.2337164751} - \left(235.95 + 1337.05pit^{0.2337164751}\right) \left(\frac{1}{p3 \ dpca \ pit}\right)^{\frac{k56 - 1}{k56}} e^{faj}$$

$$\Rightarrow eqI := evalf ((mga*c45*(T4-T5) - m*c12*(T2-T1) + m*c23*(T3-T4) / rm)) = 0;$$

$$449.0040 (1337.05 - 1337.05 -$$

$$eqI := \frac{449.0040(1337.05 - 1337.05pit^{0.2357142857})}{rm}$$

$$= 1.16150083310^{5} piv^{0.2857142857} + 1.16150083310^{5}$$

$$+ \frac{1}{rm} \left(374.525 \left(-1564.861111 - 81.3888889piv^{0.2857142857} + 3.265284980 \left(-32.555555 + 325.55555piv^{0.2857142857} \right) \left(\frac{1}{piv} \right)^{0.2700729927} \right) \right) = 0$$

$$>$$

$$>$$

$$>$$

$$>$$

$$>$$

$$>$$

$$449.0040* (1337.05 - 116150.0833*piv^{.2857142857} - 116150.0833 - 116050 - 116050 - 116050 - 116050 - 116050 - 116050 - 116050 - 116050 - 116050 - 11$$

32.555555+325.5555555*piv².2857142857)*(1/piv)².2700729927)/rm;

$$\frac{449.0040(1337.05 - 1337.05pit^{0.2337164751})}{rm}$$

$$= 1.16150083310^{5} piv^{0.2857142857} - 1.16150083310^{5}$$

$$- \frac{1}{rm} \left(374.525 \left(-1564.861111 - 81.3888889piv^{0.2857142857} + 3.265284980 (-32.555555) + 325.555555piv^{0.2857142857} \right) \left(\frac{1}{piv} \right)^{0.2700729927} \right) \right)$$

> pit:=(-(rm*(116150.0833*piv^.2857142857-116150.0833-374.525*(-1564.861111-81.3888889*piv^.2857142857+3.265284980*(-32.555555+325.555555*piv^.2857142857)*(1/piv)^.2700729927)/rm)/449.00 40/1337.05-1))^(1/.2337164751);

$$pit := \left(-0.000001665720542m \left(1.16150083310^{5} piv^{0.2857142857} - 1.16150083310^{5} - \frac{1}{rm} \left(374.525 \left(-1564.861111 - 81.3888889piv^{0.2857142857} + 3.265284980 \left(-32.5555555 + 325.555555piv^{0.2857142857} \right) \left(\frac{1}{piv} \right)^{0.2700729927} \right) \right) + 1 \right)$$

$$4.278688525$$

> plot3d(pit,piv=1.1..1.6,rm=2..4.5);

> >

>

>

> restart; > dh12:=wv^2/2;dh56:=wt^2/2; $dh12:=\frac{1}{2}wv^2$ $dh56:=\frac{1}{2}wt^2$ > m:=1;mga:=1.02*m/rm; m:=1 $mga:=\frac{1.02\cdot 1}{rm}$ > eqI:=m*dh12+m*dh23/rm-mga*dh45=0; $eqI:=\frac{1}{2}wv^2 + \frac{dh23}{rm} - \frac{1.02 dh45}{rm} = 0$ > eqT:=fT-mga*wt-m*wv/rm=0; $eqT:=fT - \frac{1.02 wt}{rm} - \frac{wv}{rm} = 0$

POMPA DE CALDURA CU APORT SOLAR

.6666666666*Ta+491.91666666;Tsao:=-

.9047619047*Ta+562.1904761;Ca:=1000;Csc:=1000;

A := aperture

Asc := absorber_area

Is := *solar_insolation*

FO := optical_efficiency

etasc := solar_colector_efficiency

epssc := solar_colector_effectiveness

UL := solar_colector_heat_loss_coefficient

Tsai := -0.666666666667a + 491.9166666

Tsao := -0.9047619047Ta + 562.190476

Ca := 1000

Csc := 1000

> Ntsai_50_30;DNtsai_tsao_10;with(CurveFitting):

Tsai:=PolynomialInterpolation([[253.15,323.15],[288.15,303.15]], Ta);

Ntsai_50_30

DNtsai_tsao_10

Tsai := -0.5714285714*Ta* + 467.8071428

> with(CurveFitting):

Tsao:=PolynomialInterpolation([[253.15,333.15],[288.15,304.4]], Ta);

Tsao := -0.8214285714*Ta* + 541.094642

> restart;

>

Refrigerent_R134a;Ta:=253.15;Is:=50;FO:=0.95;UL:=2;Ca:=1000;Csc:=1000;e
tasc:=0.75;epssc:=0.75;

Refrigerent_R134a

Ta := 253.15

Is := 50

FO := 0.95

 $U\!L:=\!2$

Ca := 1000

Csc := 1000

etasc := 0.75

epssc := 0.75

> Tsai:=-.5714285714*Ta+467.8071428;Tsao:=-.8214285714*Ta+541.0946428;

Tsai := 323.1500000

Tsao := 333.150000(

> Condenser;Tc:=Tsai+Qc/Ca/epsc;

Condenser

 $Tc := 323.1500000 + \frac{1}{1000} \frac{Qc}{epsc}$

> Solar colector;Asc:=100;A:=Asc;Tsc:=Ta+Is*(FO-

etasc)/UL;Ts:=Ta+Is*FO/UL;Tsco:=Ta+Is*(FO-etasc)/UL-

etasc*Is*Asc/epssc/Csc;Tsci := Ta+etasc*Is*Asc*(1-1/epssc)/Csc+Is*(F0etasc)/UL;

Solar colector

Asc := 100

A := 100

Tsc := 258.150000(

Ts := 276.9000000

Tsco := 253.150000(

Tsci := 256.900000

> Evaporator;Te:=Ta+etasc*Is*Asc*(1-1/epssc)/Csc+Is*(FO-etasc)/UL-

etasc*Is*Asc/epse/Csc;Qe:=epse*Csc*(Tsci-Te);

Evaporator

 $Te := 256.9000000 - \frac{3.750000000}{epse}$

Qe := 3750.00000(

> Irreversibility;RT:=Tc/Te;COP_r:=-

.9796943861+1.91034690519667039*RT;;Irr:=COP r/RT;

Irreversibility

$$RT := \frac{323.1500000 + \frac{1}{1000} \frac{Qc}{epsc}}{256.9000000 - \frac{3.750000000}{epse}}$$

$$COP_r := -0.9796943861$$

$$+ \frac{1.91034690519667039(323.1500000 + \frac{1}{1000} \frac{Qc}{eps})}{256.9000000 - \frac{3.750000000}{epse}}$$

$$Irr := \frac{1}{323.1500000 + \frac{1}{1000} \frac{Qc}{epsc}} \left(\left(-0.9796943861 + \frac{1.91034690519667039(323.1500000 + \frac{1}{1000} \frac{Qc}{epsc})}{256.9000000 - \frac{3.750000000}{epse}} \right) \right)$$

> Qc:=solve((Qc-Qe*RT*Irr),Qc);Tsao:=Tsai+Qc/Ca;

 $Qc := (150. epsc (4.57056393210^{12} epse + 4.59231743510^{10}))/$ $(1.28450000010^{11} epsc epse - 1.87500000010^{9} epsc$ $-3.58190044710^9 epse$)

```
Tsao := 323.1500000 + (0.1500000000epsc (4.57056393210^{12} epse
```

- $+4.59231743510^{10}))/(1.28450000010^{11} epsc epse$
- $-1.8750000010^9 epsc 3.58190044710^9 epse$)

> W:=Qe-Qc;COP:=-Qc/W;

 $W := 3750.000000 - (150. epsc (4.57056393210^{12} epse$ $+4.59231743510^{10}))/(1.28450000010^{11} epsc epse$ $-1.8750000010^9 epsc - 3.58190044710^9 epse$)

$$COP := -(150. epsc (4.57056393210^{12} epse + 4.59231743510^{10})) / ((1.28450000010^{11} epsc epse$$

 $-1.87500000010^9 epsc - 3.58190044710^9 epse)$ (3750.000000

 $-(150. epsc)(4.57056393210^{12} epse)$

 $+4.59231743510^{10}))/(1.28450000010^{11} epsc epse$

 $-1.87500000010^9 epsc - 3.58190044710^9 epse))))$

> COP Carnot:=Tc/(Tc-Te);R COP:=COP/COP Carnot;

$$COP_Carnot := (323.150000+ (0.150000000(4.57056393210^{12} ep: + 4.59231743510^{10}))/(1.28450000010^{11} epsc epse - 1.87500000010^9 epsc - 3.58190044710^9 epse))/(66.250000+ (0.150000000(4.57056393210^{12} epse + 4.59231743510^{10}))/(1.28450000010^{11} epsc epse - 1.87500000010^9 epsc - 3.58190044710^9 epse) + \frac{3.750000000}{epse})$$

$$R_COP := -\left(150. epsc \left(4.57056393210^{12} epse\right) + 4.59231743510^{10}\right) \left(66.2500000 + \left(0.150000000(4.57056393210^{12} epse + 4.59231743510^{10})\right)\right), \\ (1.2845000010^{11} epsc epse - 1.8750000000) epsc - 3.58190044710^9 epse + \frac{3.750000000}{epse}\right) \right) / \\ \left((1.28450000010^{11} epsc epse - 1.87500000010^9 epsc - 3.58190044710^9 epse) \left(3750.000000 - \left(150. epsc \left(4.57056393210^{12} epse + 4.59231743510^{10}\right)\right)\right) \right) \right) \\ (1.28450000010^{11} epsc epse - 1.87500000010^9 epsc - 3.58190044710^9 epse) \left(323.1500000 + \left(0.150000000(4.57056393210^{12} epse + 4.59231743510^{10})\right)\right) \\ (1.28450000010^{11} epsc epse - 1.87500000010^9 epsc - 3.58190044710^9 epse) \left(323.1500000 + \left(0.150000000(4.57056393210^{12} epse + 4.59231743510^{10})\right)\right) \\ (1.28450000010^{11} epsc epse - 1.87500000010^9 epsc - 3.58190044710^9 epse) \right) \\ (1.28450000010^{11} epsc epse - 1.87500000010^9 epsc - 3.58190044710^9 epse) \right)$$

plot3d(W,epsc=0.1..0.9,epse=0.1..0.9,title="W");plot3d(Qc,epsc=0.1..0.9
,epse=0.1..0.9,title="Qc");plot3d(COP,epsc=0.1..0.9,epse=0.1..0.9,title
="COP");

>

plot3d(Tc,epsc=0.1..0.9,epse=0.1..0.9,title="Tc");plot3d(Te,epsc=0.1..0 .9,epse=0.1..0.9,title="Te");

plot3d(Irr,epsc=0.1..0.9,epse=0.1..0.9,title="Irr");plot3d(R_COP,epsc=0 .1..0.9,epse=0.1..0.9,title="R_COP=COP/COP_Carnot");plot3d(COP_Carnot,e psc=0.1..0.9,epse=0.1..0.9,title="COP_Carnot");

COMPRESOR CENTRIFUGAL

> restart;

1-Debitul masic: m [kg/s]

> m:=1.2;

m := 1.2

2-Umiditatea relativa a aerului aspirat de compresor: fiN

> fiN:=0.7;

fiN := 0.7

3-Presiunea totala a aerului aspirat de compresor: p_tot_N, [n/m2]

> p_tot_N:=101325;

p_tot_N := 101325

4-Temperatura aerului aspirat de compresor: T_tot_N, [K]

> T_tot_N:=288;

$T_tot_N := 288$

5-Constanetele de gaz perfect pentru aerul aspirat de compresor si vaporii de apa: R_a_us si R_v, [J/kg K]

```
> R_a_us:=287;R_v:=462;
```

 $R_a_{us} := 287$

 $R_v := 462$

6-Exponentul adiabatic al aerului: k

> k:=1.395;

k := 1.395

7-Presiunea de saturatie a vaporilor din aerul umed: p_sat, [N/m2]

> p_sat:=1704.1;

 $p_sat := 1704.1$

8-Presiunea partiala a vaporilor din aerul umed aspirat: p_v, [N/m2]

> p_v:=fiN*p_sat;

 $p_v := 1192.87$

9-Continutul de umiditate al aerului umed aspirat de compresor: x, [kg/kg]

> x:=0.622*p_v/(p_tot_N-p_v);

x := 0.00740986075

10-Constanta de gaz perfect a aerului umed, R_a_um, [J/kg K]

> $R_a_um := (R_a_us + x + R_v) / (1 + x);$

R_a_um := 288.287187′

11-Caldura specifica izobara a aerului umed aspirat de compresor: cp, [J/kg K]

> cp:=k*R_a_um/(k-1);
cp := 1018.128169

12-Viteza absoluta a aerului aspirat de compresor: c1, [m/s]

```
> cN:=30;
```

cN := 30

Viteza absoluta a aerului la intrarea in rotor: c1, [m/s]

> c1:=60;

c1 := 60

13-Unghiul vitezei absolute la intrarea in rotor, pozitiv in sensul de rotatie al rotorului, considerat constant pe raza (se alege intre 0 si 30 grade): psi, [rad]

```
> psi:=(30*evalf(Pi)/180);psi_gr:=psi*180/evalf(Pi);
```

 $\psi := 0.523598775'$

psi_gr := 30.000000

Temperatura statica a aerului aspirat de compresor: TN, [K]

> TN:=T_tot_N-cN^2*(k-1)/2/k/R_a_um;

TN := 287.5580124

14-Presiunea statica a aerului aspirat de compresor: pN, [N/m2]

```
> pN:=p_tot_N*(TN/T_tot_N)^(k/(k-1));
```

 $pN := 1.00776890310^5$

15-Raportul vitezelor in racordul de aspiratie, c1_cN

> c1_cN:=c1/cN;

 $c1_cN := 2$

16-Temperatura teoretica statica a aerului la intrarea in rotor, T1s, [K]

> T1s:=T_tot_N-c1^2*(k-1)/2/k/R_a_um;

T1s := 286.232049'

17-Coeficientul de pierderi in racordul de aspiratie, (se alege in domeniul 0,5....1,5): zRI

> zRI:=1;

```
zRI := 1
```

18-Pierderi in racordul de aspiratie: l_N_1, [J/kg]; L_N_1, [W]

```
> l_N_1:=zRI*c1^2/2;L_N_1:=l_N_1*m;
```

 $l_N_1 := 1800$

 $L_N_1 := 2160.0$

19-Cifra politropica in racordul de aspiratie, (este de fapt n/(n-1)): sRI

```
> sRI:=k*(1-1_N_1*(k-1)/k/R_a_um/(T1s-TN))/(k-1);
```

sRI := 8.24050641.

20-Exponentul politropic in racordul de aspiratie: n

```
> n:=sRI/(sRI-1);
```

n := 1.13811188′

21-Temperatura statica a aerului la intrarea in rotor, T1, [K]

> T1:=T_tot_N-(c1^2-cN^2)/2/cp-l_N_1/cp;

T1 := 284.9060870

22-Presiunea statica la intrarea in rotor: p1, [N/m2]

```
> p1:=pN*(T1/TN)^{(n/(n-1))};
```

p1 := 93369.11789

23-Presiunea totala la intrarea in rotor: p1_tot, [N/m2]

> p1_tot:=p1*(T_tot_N/T1)^(k/(k-1));

p1_tot := 96999.4687(

Coeficientul de restabilire a presiunii totale: DRI

```
> DRI:=p1_tot/p_tot_N;
```

DRI := 0.957310325

24-Presiunea totala a aerului comprimat: p_tot_K, [N/m2]

> p_tot_K:= 920000;

p_tot_K := 920000

25-Raportul de comprimare al compresorului, in parametri de franare: piC

> piC_tot:=evalf(p_tot_K/p_tot_N);

piC_tot := 9.07969405⁴

26-Randamentul izentropic global, se impune initial in domeniul 0,75....0,85 si se verifica ulterior: etas

> etas_tot:=.7166739258;

etas_tot := 0.716673925

27-Consumurile energetice teoretice globale: ladC_tot, [J/kg] si LadC_tot, [W]

```
> ladC_tot:=k*R_a_um*T_tot_N*(piC_tot^((k-1)/k)-1)/(k-
```

```
1);LadC_tot:=m*ladC_tot;
```

 $ladC_tot := 2.54395876710^5$

 $LadC_{tot} := 3.05275052010^5$

28-Consumuri energetice reale globale: l_real_C, [J/kg] si L_real_C, [W]

> l_real_C_tot:=ladC_tot/etas_tot;L_real_C_tot:=m*l_real_C_tot;

 $l_real_C_tot := 3.54967395310^5$

 $L_{real}_{C_{tot}} := 4.25960874410^5$

29-Cifra de debit (aleasa intre 0,25....0,35, probabil este raportul c2r/u2): fi2

> fi2:=0.25;

```
fi2 := 0.25
```

30-Numarul de palete pe rotor (intre 1535): z2

> z2:=18;

z2 := 18

31-Unghiul geometric de iesire din paletele mobile: beta2 [rad]

```
> beta2:=evalf(Pi/2);
```

 $\beta 2 := 1.57079632'$

32-Raportul dintre diametrul minim al paletei la intrare (curgerea axiala) si diametrul maxim al rotorului (uzual intre 0,150,35): db_rap

```
> db_rap:=0.015;
```

db_rap := 0.015

33-Raportul dintre diametrul maxim al paletei la intrare (curgerea axiala) si diametrul maxim al rotorului

(intre 0,450,65): db_rap

> dext_rap:=0.545;

dext_rap := 0.545

34-Raportul dintre diametrul mediu al paletei la intrare (curgerea axiala) si diametrul maxim al rotorului:

d1_pe_d2

> d1_pe_d2:=sqrt((dext_rap^2+db_rap^2)/2);

 $d1_pe_d2 := 0.385519130$:

35-Coeficientul de circulatie: miu

> miu:=1/(1+2*evalf(Pi)/3/z2/(1-d1_pe_d2^2));

miu := 0.879764759

36-Coeficientul cinematic de sarcina (probabil c2u/u2): fiu2

> fiu2:=miu*(1-fi2*cot(beta2));

fiu2 := 0.879764759

37-Coeficient de pierderi prin frecare (intre 0,03....0,1): alfa

> alfa:=0.075;

alfa := 0.075

38-Unghiul vitezei absolute la intrarea in rotor: alfa1 [rad], alfa1 gr [grade]

> alfa1:=evalf(Pi/2)-psi;alfa1_gr:=alfa1*180/evalf(Pi);

alfa1 := 1.04719755

alfa1 gr := 59.99999998

39-Viteza tangentiala la intrarea in rotor (considerata constanta pe raza, zona de curgere axiala): c1u [m/s]

> clu:=c1*cos(alfa1);

c1u := 30.0000000

Viteza axiala la intrarea in rotor (considerata constanta pe raza, zona de curgere axiala): c1a [m/s]

```
> cla:=cl*sin(alfal);
```

c1a := 51.9615242.

40-Viteza tangentiala la iesirea din rotor: u2 [m/s]

>

u2:=c1u*d1_pe_d2/2/(fiu2+alfa)+sqrt((c1u*d1_pe_d2/2/(fiu2+alfa))^2+1_re

al_C_tot/(fiu2+alfa));

u2 := 615.8287499

41-Densitatea aerului la intrarea in rotor: ro1 [kg/m3]

> ro1:=p1/R_a_um/T1;

ro1 := 1.13677937'

42-Pierderi raportate prin scapari, intre roata si carcasa (intre 0,02....0,04): betapr

> betapr:=0.03;

betapr := 0.03

43-Diametrul exterior al rotorului: d2 [m]

> d2:=sqrt(4*m*(1+betapr)/evalf(Pi)/ro1/c1a/(dext rap^2-db rap^2));

d2 := 0.299607935'

44-Diametrul butucului la intrare (la baza paletei, curgere axiala): d1b [m]

> d1b:=d2*db_rap;

d1b := 0.00449411903

45-Diametrul maxim al rotorului la intrare (la varful paletei, curgere axiala): d1ext [m]

> dlext:=d2*dext_rap;

d1ext := 0.163286325(

46-Diametrul mediu al rotorului la intrare (curgere axiala): d1 [m]

> d1:=d2*d1_pe_d2;

d1 := 0.115504590!

47-Turatia rotorului: turatia [rot/min]

> turatia:=60*u2/evalf(Pi)/d2;

turatia := 39256.1790

Viteza unghiulara a rotorului: omega [rad/s]

```
> omega:=evalf(Pi)*turatia/30;
```

 $\omega := 4110.89745$

48-Viteza tangentiala intrarea in rotor, la diametrul mediu: u1 [m/s]

> u1:=u2*d1_pe_d2;

u1 := 237.413764*′*.

49-Viteza tangentiala la varful paletei, la intrarea in rotor: u1ext [m/s]

```
> ulext:=u2*dext_rap;
```

ulext := 335.626668'

50-Viteza tangentiala la baza paletei, la intrarea in rotor: u1b [m/s]

> u1b:=u2*db_rap;

u1b :=9.237431248

51-Componenta tangentiala a vitezei relative a aerului la d1ext (negativa pentru ca este in sens contrar lui

u): w1ext [m/s]

> wluext:=clu-ulext;

```
w1uext := -305.626668'
```

52-Componenta tangentiala a vitezei relative aerului la d1b (negativa pentru ca este in sens contrar lui u):

w1b [m/s]

> wlub:=clu-ulb;

w1ub := 20.7625687(

53-Unghiul vitezei relative la d1ext (masurat de la axa +u): beta1ext [rad], beta1ext_gr [grade]

> betalext:=evalf(Pi)-arctan(c1a/(u1ext-

clu));betalext_gr:=betalext*180/evalf(Pi);

beta1ext := 2.97318662'

beta1ext_gr := 170.351045⁴

54-Unghiul vitezei relative la d1b (masurat de la axa +u): beta1b [rad], beta1b_gr [grade]

> beta1b:=evalf(Pi)-arctan(c1a/(u1b-

clu));beta1b_gr:=beta1b*180/evalf(Pi);

beta1b :=4.33224832

beta1b_gr := 248.219545(

55-Unghiul vitezei relative la d1 (masurat de la axa +u): beta1 [rad], beta1_gr [grade]

> beta1:=evalf(Pi)-arctan(c1a/(u1-c1u));beta1 gr:=beta1*180/evalf(Pi);

β1 := 2.89612360:

beta1_gr :=165.935659:

56-Viteza relativa la d1ext: w1ext [m/s]

> wlext:=sqrt(cla^2+wluext^2);

wlext := 310.012355(

57-Viteza sunetului la intrarea in rotor: a1 [m/s]

```
> a1:=sqrt(k*T1*R a um);
```

a1 := 338.4937378

58-Numarul Mach la d1ext: Mw1ext [m/s]

```
> Mwlext:=wlext/a1;
```

Mw1ext := 0.915858466

59-Viteza relativa la intrarea in rotor, la diametrul mediu: w1 [m/s]

```
> w1:=c1a/sin(beta1);
```

```
w1 := 213.8234549
```

60-Unghiul vitezei absolute la iesirea din rotor: alfa2 [rad], alfa2_gr [grade]

```
> alfa2:=arctan(fi2/fiu2);alfa2_gr:=alfa2*180/evalf(Pi);
```

alfa2 := 0.276868447:

alfa2_gr :=15.8633935′.

61-Viteza absoluta la iesirea din rotor: c2 [m/s]

> c2:=u2*sqrt(fi2^2+fiu2^2);

c2 := 563.2345749

Temperatura franata a aerului la iesirea din rotor: T2_tot [K]

> T2_tot:=TN+1_real_C_tot*(k-1)/k/R_a_um;

 $T2_tot := 636.205074'$

62-Temperatura franata a aerului la iesirea din rotor: T2_tot [K]

> T2:=T2_tot-c2^2*(k-1)/2/k/R_a_um;

T2 := 480.4127119

63-Coeficientii de rezistenta ai rotii de lucru, la intrare csi1 (intre 0,1...0,3) si la rasucirea curentului in roata de lucru csi2 (intre 0,1...0,2)

> csi1:=0.15;csi2:=0.15;

csi1 := 0.15

csi2 := 0.15

64-Pierderi in rotor: suma_lr [J/kg], suma_Lr [W]

> suma_lr:=csi1*w1^2/2+csi2*fi2^2*u2^2/2;suma_Lr:=m*suma_lr;

suma_lr := 5206.746408

suma_Lr := 6248.095690

65-Pierderi prin frecare i rotor: lf [J/kg], Lf [W]

> lf:=alfa*u2^2;Lf:=m*lf;

lf := 28443.3786

Lf := 34132.0544.

66-Cifra politropica in roata de lucru: sr1

> sr1:=k*(1-(k-1)*(lf+suma_lr)/k/R_a_um/(T2-T1))/(k-1);

sr1 := 2.93461047

67-Exponentul politropic in roata de lucru: n_r1

```
> n_r1:=sr1/(sr1-1);
```

 $n_r1 := 1.516899921$

68-Presiunea statica la iesirea din rotor: p2 [N/m2]

> p2:=p1*(T2/T1)^sr1;

 $p2 := 4.32617242010^5$

69-Densitatea aerului la iesirea din rotor: ro2 [kg/m3]

> ro2:=p2/T2/R_a_um;

ro2 := 3.123661698

70-Latimea raportata a rotii de lucru la iesire:b2_pe_d2 (uzual intre 0,03....0,08)

> b2_pe_d2:=m/evalf(Pi)/d2^2/fi2/ro2/u2;

 $b2_pe_d2 := 0.00884831933$

71-Latimea rotii de lucru la iesire:b2 [m]

> b2:=d2*b2_pe_d2;

b2 := 0.00265102668

72-Viteza sunetului la iesirea din rotor: a2 [m/s]

> a2:=sqrt(k*R_a_um*T2);

a2 := 439.548720

73-Numarul Mach la iesirea din rotor, pentru viteza absoluta: Mc2

> Mc2:=c2/a2;

Mc2 := 1.28139282.

74-Consumuri energetice politropice in roata de lucru: lpol12 [J/kg], Lpol12 [W]

> $lpol12:=n_r1*R_a_um*T1*((p2/p1)^((n_r1-1)/n_r1)-1)/(n_r1-1)$

1);Lpol12:=m*lpol12;

 $lpol12 := 1.65400677010^5$

 $Lpol12 := 1.98480812410^5$

75-Randamentul interior al rotii de lucru: etai12

> etai12:=(lpol12+0.5*(c2^2-c1^2))/l_real_C_tot;

etai12 := 0.907737652'

76-Dimensiunea radiala raportata a difuzorului nepaletat (intre 1,03....1,15): d3_pe_d2

> d3_pe_d2:=1.2;

 $d3_pe_d2 := 1.2$

77-Latimea difuzorului nepaletat la iesire (normal = b2+(0,0005....0,001): b3 [m]

> b3:=b2+0.001;

b3 := 0.00365102668

78-Raportul intre densitatea ro2 si ro3, (se alege prealabil 0,75...0,98 si se verifica ulterior): ro3 [kg/m3]

> ro2_pe_ro3:=.9100861254;

 $ro2_pe_ro3 := 0.910086125$

79-Unghiul de orientare a gazului la iesirea din difuzorul nepaletat: alfa3 [rad], alfa_gr [grade]

>

alfa3:=arctan(b2*ro2_pe_ro3*tan(alfa2)/b3);alfa3_gr:=180*alfa3/evalf(Pi

);

alfa3 := 0.185620806'

alfa3_gr := 10.6352888

80-Diametrul la iesire din difuzorul nepaletat: d3 [m]

> d3:=d2*d3_pe_d2;

d3 := 0.359529522

81-Viteza gazului la iesirea din difuzorul nepaletat: c3 [m/s]

```
> c3:=m*ro2_pe_ro3/evalf(Pi)/ro2/d3/b3/sin(alfa3);
```

c3 := 459.378288.

81-Temperatura statica la iesirea din difuzorul nepaletat: T3 [K]

> T3:=T2_tot-(k-1)*c3^2/2/k/R_a_um;

T3 := 532.569590⁴

82-Coeficientul de rezistenta al difuzorului nepaletat (intre 0,03...0,25; valori mai mici pentru d3/d2 mai mici): csidn

```
> csidn:=0.15;
```

csidn := 0.15

83-Pierderi pe difuzorul nepaletat: lp_dn [J/kg], Lp_dn [W]

> lp_dn:=csidn*c2^2/2;Lp_dn:=m*lp_dn;

lp_dn := 23792.4889

Lp_dn := 28550.9867

84-Cifra politropica pentru comprimarea din difuzorul nepaletat: sdn

> $sdn:=k*(1-lp_dn*(k-1)/k/R_a_um/(T3-T2))/(k-1);$

sdn := 1.94929414

85-Exponentul politropic pentru comprimarea din difuzorul nepaletat: n_dn

```
> n_dn:=sdn/(sdn-1);
```

n_dn := 2.05341427(

86-Recalcularea raportului ro2_pe_ro3

```
> ro2_pe_ro3_f:=(T2/T3)^(1/(n_dn-1));errro:=ro2_pe_ro3/ro2_pe_ro3_f;
```

 $ro2_pe_ro3_f := 0.9067922820$

errro :=1.003632412

87-Presiunea statica la iesirea din difuzorul nepaletat: p3 [N/m2]

> p3:=p2*(T3/T2)^(sdn);

 $p3 := 5.28880900210^5$

88-Viteza sunetului la iesirea din difuzorul nepaletat: a3 [m/s]

> a3:=sqrt(k*R_a_um*T3);

a3 := 462.794252'

89-Numarul Mach la iesirea din difuzorul nepaletat: Mc3

> Mc3:=c3/a3;

Mc3 := 0.992618827

90-Viteza gazului la iesirea din difuzorul paletat (intre 60...120): c4 [m/s]

> c4:=70;

c4 := 70

91-Latimea difuzorului paletat la iesire - nu are indicatie de alegere: b4 [m]

> b4:=b3;

b4 := 0.00365102668

92-Unghiul geometric al paletelor la intrarea in difuzorul paletat (alfa3 + pana la 2 grade): alfa3p [rad] alfa3p_gr [grade]

```
> alfa3p:=alfa3+1.42*evalf(Pi)/180; alfa3p_gr:=alfa3_gr+1.42;
```

alfa3p := 0.210404482

alfa3p_gr := 12.0552888

93-Unghiul geometric al paletelor la iesirea din difuzorul paletat (alfa3p + (10..15) grade): alfa4p [rad] alfa4p_gr [grade]

> alfa4p:=alfa3p+14*evalf(Pi)/180;alfa4p_gr:=alfa3p_gr+14;

alfa4p := 0.454750577

 $alfa4p_gr := 26.0552888$

94-Unghiul de ramanere in urma a curentului la iesirea din difuzorul paletat (1..3 grade): dalfa4 [rad] dalfa4_gr [grade]

> dalfa4:=2*evalf(Pi)/180;dalfa4_gr:=dalfa4*180/evalf(Pi);

dalfa4 := 0.0349065850⁴

dalfa4_gr := 2.00000000

95-Unghiul vitezei absolute la iesirea din difuzorul paletat: alfa4 [rad], alfa_gr [grade]

> alfa4:=alfa4p-dalfa4;alfa4_gr:=alfa4p_gr-dalfa4_gr;

alfa4 := 0.419843992.

alfa4_gr := 24.0552888

96-Coefientul de rezistenta al difuzorului paletat (intre 0,1....0,25): csidp

> csidp:=0.12;

csidp := 0.12

97-Pierderi in difuzorul paletat: lp_dp [J/kg], Lp_dp [W]

> lp_dp:=csidp*c3^2/2;Lp_dp:=m*lp_dp;

 $lp_dp := 12661.7047$

Lp_dp := 15194.0456:

98-Temperatura statica la iesirea din difuzorul paletat: T4 [K]

> T4:=T2_tot-c4^2*(k-1)/2/k/R_a_um;

T4 := 633.7986979

99-Cifra politropica in difuzorul paletat: sdp

```
> sdp:=k*(1-lp_dp*(k-1)/k/R_a_um/(T4-T3))/(k-1);
```

sdp := 3.097773762

100-Exponentul politropic in difuzorul paletat: n_dp

```
> n_dp:=sdp/(sdp-1);
```

n_dp := 1.476695828

101-Presiunea statica la iesirea din difuzorul paletat: p4 [N/m2]

> p4:=p3*(T4/T3)^sdp;

 $p4 := 9.06717644810^5$

102-Raportul dimetrelor in difuzorul paletat (recomandabil intre 1,25...1,35): d4 pe d3 [m]

> d4_pe_d3:=c3*(T3/T4)^(1/(n_dp-1))*b3*sin(alfa3)/c4/b4/sin(alfa4);

d4_pe_d3 := 2.06257481

103-Diametrul de iesire din difuzorul paletat: d4 [m]

> d4:=d3*d4_pe_d3;

d4 := 0.741556537:

104-Unghiul mediu de deschidere echivalent al unui difuzor plan (se alege intre 6....8 grade): tetam [rad], tetam_gr [grade]

> tetam_gr:=7;tetam:=tetam_gr*evalf(Pi)/180;

 $tetam_gr := 7$

tetam := 0.122173047'

105-Numarul de palete din difuzor (se rotunjeste, e de dorit ca z2 si z3 sa fie numere prime intre ele): z3

```
z3:=round(2*evalf(Pi)*sin((alfa3p)^2)*((d4*sin(alfa4p)/d3/sin(alfa3p))^
2-1)/((d4/d3)^2-1)/tetam);
```

z3 := 12

106-Sectionile de curgere normale la vitezele de intrare si iesire din difuzorul paletat: S3, S4 [m2]

```
> S3:=evalf(Pi)*d3*b3*sin(alfa3);S4:=evalf(Pi)*d4*b4*sin(alfa4);
```

```
S3 := 0.000761078199
```

S4 := 0.00346706913

107-Raportul ariiloe S4/S3, mai mic de 4: S4_pe_S3

> S4_pe_S3:=S4/S3;

```
S4_pe_S3 := 4.55547029{
```

108-Viteza la iesirea din camera spirala, (intre 40...80, dar mai mica decat c4): c5 [m/s]

```
> c5:=50;
```

```
c5 := 50
```

109-Coeficient de rezistenta in camera spirala (intre 0,15...0,3): csics

```
> csics:=0.258;
```

csics := 0.258

110-Pierderi in camera spirala: lp_cs [J/kg], Lp_cs [W]

```
> lp_cs:=csics*c4^2/2;Lp_cs:=m*lp_cs;
```

lp_cs := 632.100000(

Lp_cs := 758.520000(

111-Temperatura statica la iesirea din camera spirala: T5 [K]

```
> T5:=T2_tot-c5^2*(k-1)/2/k/R_a_um;
```

T5 := 634.9773314

112-Cifra politropica din camera spirala: scs

```
> scs:=k*(1-(k-1)*lp_cs/k/R_a_um/(T5-T4))/(k-1);
```

scs := 1.67135121(

113-Exponentul politropic in camera spirala: n_cs

> n_cs:=scs/(scs-1);

n_cs := 2.489533312

114-Presiunea statica la iesirea din camera spirala: p5 [N/m2]

> p5:=p4*(T5/T4)^scs;

 $p5 := 9.09537573910^5$

115-Presiunea totala la iesirea din camera spirala: p5_tot [N/m2]

> p5 tot:=p5*(T2 tot/T5)^(k/(k-1));

p5_tot := 9.15763583210⁵

116-Raportul de crestere a presiunii totale: piC_tot_f

```
> piC_tot_f:=p5_tot/p_tot_N;errpiC:=piC_tot/piC_tot_f;
```

piC_tot_f := 9.03788387

errpiC := 1.00462610.

117-Randamentul izentropic calculat in parametrii de franare: etas_tot_f

```
> etas_tot_f:=T_tot_N*(piC_tot_f^((k-1)/k)-1)/(T2_tot-
```

```
T_tot_N);erretas:=etas_tot/etas_tot_f;
```

etas_tot_f := 0.715566227

erretas := 1.00154800.

118-Randamentul mecanic al compresorului (intre 0,95...0,99): etamec

> etamec:=0.975;

etamec := 0.975

119-Puterea totala reala a compresorului: Pm [J/kg], P [W]

```
> Pm:=l_real_C_tot/etamec;P:=m*Pm;
```

```
Pm := 3.64069123410^5
```

```
P := 4.36882948110^5
```

```
>
```

>

>

.

>

> save

m,psi_gr,piC_tot_f,P,turatia,etas_tot_f,etai12,TN,T1,T2,T3,T4,T5,pN,p1,
p2,p3,p4,p5,p5_tot,d1b,d1ext,d1,d2,d3,d4,b2,b3,b4,beta1b_gr,beta1ext_gr

```
,beta1 gr,Mw1ext,alfa2 gr,c2,Mc2,c3,Mc3,c4,c5,alfa3p gr,alfa4p gr,alfa4
gr,z2,z3, "date COMCIP";
> read "date COMCIP";
m := 1.2
psi gr := 30.000000
piC_tot_f := 9.03788387
P := 4.36882948110^5
turatia := 39256.1790
etas tot f := 0.715566227
etai12 := 0.907737652
TN := 287.5580124
T1 := 284.9060870
T2 := 480.4127119
T3 := 532.569590<sup>4</sup>
T4 := 633.7986979
T5 := 634.9773314
pN := 1.00776890310^5
p1 := 93369.11789
p2 := 4.32617242010^5
p3 := 5.28880900210^5
p4 := 9.06717644810^5
p5 := 9.09537573910^5
p5 tot := 9.15763583210^5
d1b := 0.00449411903
dlext := 0.1632863250
d1 := 0.115504590!
d2 := 0.299607935'
d3 := 0.359529522
d4 := 0.741556537:
b2 := 0.00265102668
b3 := 0.00365102668
```

b4 := 0.00365102668^t *beta1b_gr* := 248.2195450 *beta1ext_gr* := 170.3510454 *beta1_gr* := 165.935659: *Mw1ext* := 0.915858466⁴ *alfa2_gr* :=15.8633935. *c2* := 563.234574 *Mc2* := 1.28139282. *c3* := 459.378288. *Mc3* := 0.992618827 c4 := 70c5 := 50*alfa3p_gr* := 12.0552888 *alfa4p_gr* := 26.0552888 *alfa4_gr* := 24.0552888 *z2* := 18 *z3* := 12 >

IREVERSIBILITATE - VARIATII CONSTANTE DE ENTROPIE

> restart;
> restart;
> eqdT :=
$$U \cdot A \cdot \Delta T - (T - \Delta T) \cdot \Delta S = 0; \Delta T := solve(eqdT, \Delta T);$$
eqdT := $UA \ \Delta T - (T - \Delta T) \ \Delta S = 0$
 $\Delta T := \frac{T \ \Delta S}{UA + \Delta S}$
> eqdT0 := $U0 \cdot A0 \cdot \Delta T0 - (T0 + \Delta T0) \cdot \Delta S; \ \Delta T0 := solve(eqdT0, \Delta T0);$
eqdT0 := $U0 \ A0 \ \Delta T0 - (T0 + \Delta T0) \ \Delta S$
 $\Delta T0 := \frac{T0 \ \Delta S}{U0 \ A0 - \Delta S}$
> $Q := U \cdot A \cdot \Delta T;$

$$Q := \frac{UA T \Delta S}{UA + \Delta S}$$
> $Q0 := U0 \cdot A0 \cdot \Delta T0;$
 $Q0 := \frac{U0 A0 T0 \Delta S}{U0 A0 - \Delta S}$
> $P := Q - Q0;$
 $P := \frac{UA T \Delta S}{UA + \Delta S} - \frac{U0 A0 T0 \Delta S}{U0 A0 - \Delta S}$
> $\eta := 1 - \frac{Q0}{Q};$
 $\eta := 1 - \frac{Q0}{Q};$
 $\eta := 1 - \frac{U0 A0 T0 (UA + \Delta S)}{(U0 A0 - \Delta S) UA T}$
> $\Delta S := 25; A := 1; A0 := 1; T := 900; T0 := 450;$
 $\Delta S := 25; A := 1; A0 := 1; T := 900; T0 := 450;$
 $\Delta S := 25$
 $A := 1$
 $A0 := 1$
 $T := 900$
 $T0 := 450$
> $\Delta T := \frac{T \Delta S}{UA + \Delta S}; \Delta T0 := \frac{T0 \Delta S}{U0 A0 - \Delta S};$
 $\Delta T := \frac{22500}{U + 25}$
 $\Delta T0 := \frac{11250}{U0 - 25}$
> $Q := \frac{UA T \Delta S}{UA + \Delta S}; Q0 := \frac{U0 A0 T0 \Delta S}{U0 A0 - \Delta S}; P := \frac{UA T \Delta S}{UA + \Delta S} - \frac{U0 A0 T0 \Delta S}{U0 A0 - \Delta S}; \eta := 1 - \frac{U0 A0 T0 (UA + \Delta S)}{(U0 A0 - \Delta S) UA T};$
 $Q := \frac{22500U}{U + 25}$
 $Q0 := \frac{11250U0}{U0 - 25}$
 $P := \frac{22500U}{U + 25} - \frac{11250U0}{U0 - 25}$

 $\eta := 1 - \frac{1}{2} \; \frac{\textit{U0}\;(\textit{U}+25)}{(\textit{U0}-25)\;\textit{U}}$

> $plot(\Delta T, U = 100..10000); plot(\Delta T0, U0 = 100..10000);$

> plot(Q, U = 100..10000); plot(Q0, U0 = 100..10000);

>

IREVERSIBILITATE - VARIATII CONSTANTE DE ENTROPIE

> restart;

> $eqdT := U \cdot A \cdot \Delta T - (T - \Delta T) \cdot \Delta S = 0; \Delta T := solve(eqdT, \Delta T);$

 $eqdT := UA \Delta T - (T - \Delta T) \Delta S = 0$

$$\Delta T := \frac{T \,\Delta S}{U \,A + \Delta S}$$

> $eqdT0 := U0 \cdot A0 \cdot \Delta T0 - (T0 + \Delta T0) \cdot \Delta S; \Delta T0 := solve(eqdT0, \Delta T0);$

 $eqdT0 := U0 \ A0 \ \Delta T0 - (T0 + \Delta T0) \ \Delta S$

$$\Delta T0 := \frac{T0 \ \Delta S}{U0 \ A0 - \Delta S}$$
$$Q := U \cdot A \cdot \Delta T;$$

$$Q := \frac{UA T \Delta S}{UA + \Delta S}$$
> $Q0 := U0 \cdot A0 \cdot \Delta T0;$
 $Q0 := \frac{U0 A0 T0 \Delta S}{U0 A0 - \Delta S}$
> $P := Q - Q0;$
 $P := \frac{UA T \Delta S}{UA + \Delta S} - \frac{U0 A0 T0 \Delta S}{U0 A0 - \Delta S}$
> $\eta := 1 - \frac{Q0}{Q};$
 $\eta := 1 - \frac{Q0}{Q};$
 $\eta := 1 - \frac{U0 A0 T0 (UA + \Delta S)}{(U0 A0 - \Delta S) UA T}$
> $\Delta S := 25; A := 1; A0 := 1; T := 900; T0 := 450;$
 $\Delta S := 25; A := 1; A0 := 1; T := 900; T0 := 450;$
 $\Delta S := 25$
 $A := 1$
 $A0 := 1$
 $T := 900$
 $T0 := 450$
> $\Delta T := \frac{T \Delta S}{UA + \Delta S}; \Delta T0 := \frac{T0 \Delta S}{U0 A0 - \Delta S};$
 $\Delta T := \frac{22500}{U + 25}$
 $\Delta T0 := \frac{11250}{U0 - 25}$
> $Q := \frac{UA T \Delta S}{UA + \Delta S}; Q0 := \frac{U0 A0 T0 \Delta S}{U0 A0 - \Delta S}; P := \frac{UA T \Delta S}{UA + \Delta S} - \frac{U0 A0 T0 \Delta S}{U0 A0 - \Delta S}; \eta := 1 - \frac{U0 A0 T0 (UA + \Delta S)}{(U0 A0 - \Delta S) UA T};$
 $Q := \frac{22500U}{U + 25}$
 $Q0 := \frac{11250U0}{U0 - 25}$
 $P := \frac{22500U}{U + 25} - \frac{11250U0}{U0 - 25}$

 $\eta := 1 - \frac{1}{2} \; \frac{\textit{U0}\;(\textit{U}+25)}{(\textit{U0}-25)\;\textit{U}}$

> $plot(\Delta T, U = 100..10000); plot(\Delta T0, U0 = 100..10000);$

> plot(Q, U = 100..10000); plot(Q0, U0 = 100..10000);

> IREVERSIBILITATE - Q CONSTANT

> restart;

>

T := 900;
$$T0$$
 := 300; $UA0perdS$:= $\frac{(T0 + dT0)}{dT0}$; $UAperdS$
:= $\frac{(T - dT)}{dT}$;

T := 900

T0 := 300

 $UA0 perdS := \frac{300 + dT0}{dT0}$

 $UAperdS := \frac{900 - dT}{dT}$

> plot(UA0perdS, dT0 = 1..100); plot(UAperdS, dT = 1..100);

$$P := Q - \frac{(T0 + dT0) Q}{T - \frac{Q}{UA}}$$
> $eqdT0 := Q0 - U0 \cdot A0 \cdot dT0 = 0; dT0 := solve (eqdT0, dT0);$
 $eqdT0 := \frac{(T0 + dT0) Q}{T - \frac{Q}{UA}} - U0 A0 dT0 = 0$

$$T - \frac{Q}{UA}$$

$$dT0 := \frac{T0 Q UA}{-Q UA + U0 A0 T UA - U0 A0 Q}$$
> restart;
> $\%Q := 10000, \%A := 1; \%A0 := 1; \%T := 900; \%T0 := 400;$
 $\%A0 := 1$
 $\%A00$

$$dT := \frac{Q}{U \cdot A}; dT0 := \frac{T0}{\frac{U0 A0}{Q} T - \frac{U0 A0}{U \cdot A} - 1}; dS := \frac{Q}{T - \frac{Q}{U \cdot A}};$$
 $dT := \frac{Q}{UA}$

$$dT0 := \frac{T0}{UA}$$
> $Q0 := (T0 + dT0) \cdot dS; P := Q - Q0; \eta := \frac{P}{Q};$

$$Q0 := (T0 + dT0) \cdot dS; P := Q - Q0; \eta := \frac{P}{Q};$$

$$Q0 := (T0 + dT0) \cdot dS; P := Q - Q0; \eta := \frac{P}{Q};$$

$$P := Q - \frac{(T0 + \frac{T0}{UA0} - \frac{100 A0}{Q} - \frac{U0 A0}{UA} - 1)}{T - \frac{Q}{UA}}$$

$$Q - \frac{\left(\frac{T0 + \frac{T0}{\underline{U0 \ A0 \ T}} - \frac{U0 \ A0}{UA} - 1\right)Q}{T - \underline{Q}}}{T - \frac{Q}{UA}}$$
$$\eta := \frac{0}{Q}$$

> *plot*(*dT*, *U* = 100..10000); *plot*(*dS*, *U* = 100..10000);

..10000); $plot3d(\eta, U = 100..10000, U0 = 100..10000);$

> <u>TURBOMOTORUL TRIPLUFLUX</u>

> restart;

> G2:=solve((RF-G1/G2),G2);G1:=solve((R-((G1+G2)/(G-G1-G2))),G1);

 $G2 := \frac{G1}{RF}$

 $G1 := \frac{R \ G \ RF}{R \ RF + R + RF + 1}$

> restart;

>

```
G:=359;R:=10.869;RF:=3;G1:=evalf(G*R*RF/(R+RF+1+R*RF));G2:=evalf(G1/RF)
;G3:=G-G1-G2;sumG:=G1+G2+G3;
```

G := 359

R := 10.869

RF := 3

G1 := 246.564853

G2 := 82.1882846(G3 := 30.2468616(sumG := 359.000000(

piF:=1.745;piF1:=1.288;piF2:=piF/piF1;piC:=32.7/piF;es12:=0.92;es23:=0. 92;es34:=0.88;es56:=0.94;em:=0.99;fi2a:=0.99;fi3b:=0.99;fi6c:=0.99;

- piF := 1.745
- *piF1* := 1.288
- *piF2* := 1.35481366:

piC := 18.7392550.

es12 := 0.92

es23 := 0.92

es34 := 0.88

es56 := 0.94

em := 0.99

fi2a := 0.99

fi3b := 0.99

fi6c := 0.99

```
> Ta:=273.15;p0:=1.01325;T0:=288;
```

Ta := 273.15

p0 := 1.01325

T0 := 288

>

aer_uscat;raus02:=0.2059;rausN2:=0.7809;rausC02:=0.0132;M02:=32;MN2:=28
.016;MC02:=44.01;MH20:=18.0156;Maus:=raus02*M02+rausN2*MN2+rausC02*MC02
;gaus02:=raus02*M02/Maus;gausN2:=rausN2*MN2/Maus;gausC02:=rausC02*MC02/
Maus;sumgaus:=gaus02+gausN2+gausC02;

aer_uscat

rausO2 := 0.2059

rausN2 := 0.7809

rausCO2 := 0.0132

MO2 := 32

 $MN2 := 28.01\epsilon$

MCO2 := 44.01

MH2O := 18.015€

Maus := 29.0474264

gausO2 := 0.226829045.

gausN2 := 0.753171523'

gausCO2 := 0.0199994310

sumgaus := 1.000000000

> aer umed;10:=2500;u0:=10-610.8*206.3/1000;phi0:=0.4;t0:=T0-

273.15;pvsH200:=-.4164460979e-18*t0^10+.2004215749e-

15*t0^9+.6588432820e-3*t0-.4117823023e-13*t0^8-.4560213564e-

4*t0^2+.4719547427e-11*t0^7+.6985705427e-5*t0^3-.3308562609e-9*t0^6-

.4022805689e-6*t0^4+.1465463358e-7*t0^5+.6108e-

2;x0:=MH2O*phi0*pvsH2O0/(p0-

phi0*pvsH2O0)/Maus;gaumO2:=gausO2/(1+x0);gaumN2:=gausN2/(1+x0);gaumCO2:

=gausCO2/(1+x0);gaumH2O:=x0/(1+x0);sumgaum:=gaumO2+gaumN2+gaumCO2+gaumH

20;

aer_umed

l0 := 2500

u0 := 2373.991960

 $\phi 0 := 0.4$

t0 := 14.85

pvsH2O0 := 0.0168449354[°]

x0 := 0.00415194359

gaumO2 := 0.225891157!

gaumN2 := 0.750057327'

gaumCO2 := 0.0199167378

gaumH2O := 0.00413477624

sumgaum := 0.999999999

> cpO2:=0.82397+3.05587E-4*T+5.32089E-8*T^2-1.30137E-10*T^3+3.58225E-

```
14*T^{4}; cvO2:=0.56574+2.96923E-4*T+6.54515E-8*T^{2}-1.36918E-10*T^{3}+3.71407E-14*T^{4}; cpH2O:=1.84336-2.31223E-4*T+1.1966E-6*T^{2}-6.15263E-10*T^{3}+1.0015E-13*T^{4}; cvH2O:=1.38161-2.29361E-4*T+1.19327E-6*T^{2}-6.13657E-10*T^{3}+9.99765E-14*T^{4}; cpN2:=1.07623-3.25964E-4*T+7.92186E-7*T^{2}-4.66137E-10*T^{3}+8.87148E-14*T^{4}; cvN2:=0.77884-3.22759E-4*T+7.86981E-7*T^{2}-4.62795E-10*T^{3}+8.79811E-14*T^{4}; cpCO2:=0.47158+0.00155*T-1.15247E-6*T^{2}+4.2015E-10*T^{3}-6.01131E-14*T^{4}; cvCO2:=0.28209+0.00156*T-1.15879E-6*T^{2}+4.24136E-10*T^{3}-6.01131E-14*T^{4}; cpaum:=gaumO2*cpO2+gaumN2*cpN2+gaumCO2*cpCO2+gaumH2O*cpH2O; cvaum
```

:=gaumO2*cvO2+gaumN2*cvN2+gaumCO2*cvCO2+gaumH2O*cvH2O;Raum:=cpaumcvaum;RO2:=cpO2-cvO2;RH2O:=cpH2O-cvH2O;RN2:=cpN2-cvN2;RCO2:=cpCO2cvCO2;

 $cpO2 := 0.82397 + 0.000305587T + 5.3208910^{-8} T^{2}$ - 1.3013710^{-10} T^{3} + 3.5822510^{-14} T^{4}

 $cvO2 := 0.56574 + 0.000296923T + 6.5451510^{-8} T^{2}$ - 1.3691810⁻¹⁰ T³ + 3.7140710⁻¹⁴ T⁴

 $cpH2O := 1.84336 - 0.000231223T + 0.0000011966T^{2}$ $- 6.1526310^{-10} T^{3} + 1.001510^{-13} T^{4}$

 $cvH2O := 1.38161 - 0.000229361T + 0.00000119327T^{2}$ - 6.1365710⁻¹⁰ T³ + 9.9976510⁻¹⁴ T⁴

 $cpN2 := 1.07623 - 0.000325964T + 7.9218610^{-7} T^{2}$ - 4.6613710^{-10} T^{3} + 8.8714810^{-14} T^{4}

 $cvN2 := 0.77884 - 0.000322759T + 7.8698110^7 T^2$ - 4.6279510⁻¹⁰ T³ + 8.7981110⁻¹⁴ T⁴

 $cpCO2 := 0.47158 + 0.00155 T - 0.00000115247T^{2} + 4.201510^{-10} T^{3} - 6.0113110^{-14} T^{4}$

$$cvCO2 := 0.28209 + 0.00156T - 0.00000115879T^{2}$$

+ 4.2413610¹⁰ $T^{3} - 6.0926810^{-14} T^{4}$

```
cpaum := 1.010375951 - 0.0001455473973T + 5.88198564610^{-7} T^{2}
- 3.73202227710^{-10} T^{3} + 7.38500128110^{-14} T^{4}
```

```
cvaum := 0.7233012736 - 0.0001448937181T + 5.86920368710^{-7} T^{2}- 3.72141275410^{-10} T^{3} + 7.35805418310^{-14} T^{4}
```

```
Raum := 0.2870746774 - 6.53679210^{-7} T + 1.278195910^{-9} T^{2}- 1.060952310^{-12} T^{3} + 2.694709810^{-16} T^{4}
```

```
RO2 := 0.25823 + 0.000008664T - 1.2242610^{-8} T^{2} + 6.78110^{-12} T^{3}- 1.318210^{-15} T^{4}
```

```
RH2O := 0.46175 - 0.000001862T + 3.3310^{-9}T^{2} - 1.60610^{-12}T^{3} + 1.73510^{-16}T^{4}
```

```
RN2 := 0.29739 - 0.000003205T + 5.20510^{-9} T^2 - 3.34210^{-12} T^3 + 7.33710^{-16} T^4
```

```
RCO2 := 0.18949 - 0.00001 T + 6.32 10^{-9} T^{2} - 3.986 10^{-12} T^{3} + 8.137 10^{-16} T^{4}
```

```
> wlr:=160;wlt:=wlr/0.99;h0:=int(cpaum,T=Ta..T0);hlr:=h0-
wlr^2/2/1000;hlt:=h0-wlt^2/2/1000;es01:=(h0-hlr)/(h0-hlt);
```

```
wlr := 160

wlt := 161.616161(

h0 := 14.9697442(

hlr := 2.1697442(

hlt := 1.9098523(

es0l := 0.980100000(

> eq0lt:=hlt-
```

int(cpaum,T=Ta..Tlti)=0;Tlt:=fsolve(eq01t,Tlti);eq01r:=h1r-

```
int(cpaum,T=Ta..Tlri)=0;Tlr:=fsolve(eq01r,Tlri);k01:=int(cpaum,T=T0..Tl
t)/int(cvaum,T=T0..Tlt);
```

```
eq01t := 275.9632285 - 1.010375951T1ti + 0.00007277369865T1ti^{2}
```

- $-1.96066188210^{-7} TIti^{3} + 9.33005569210^{-11} TIti^{4}$
- $-1.47700025610^{-14} T1ti^5 = 0$

```
T1t := 275.0458148
```

 $eq01r := 276.2231203 - 1.010375951T1ri + 0.00007277369865T1ri^{2}$

- $-1.96066188210^{-7} TIri^{3} + 9.33005569210^{-11} TIri^{4}$
- $-1.47700025610^{-14} T1ri^5 = 0$

T1r := 275.3037690

k01 := 1.39791173

> combustibil;gC:=0.85;gH2:=0.15;Hs:=46000;

combustibil

gC := 0.85

gH2 := 0.15

Hs := 46000

```
> p1:=(T1t/T0)^(k01/(k01-1));
```

p1 := 0.850710312.

```
>
```

```
compression_F1;h1f:=h1r+w1r^2/2/1000;T1f:=fsolve((int(cpaum,T=Ta..T1fi)
-
```

```
hlf),Tlfi);kllf:=int(cpaum,T=Tlr..Tlf)/int(cvaum,T=Tlr..Tlf);plf:=pl*(T
lf/Tlr)^(kllf/(kllf-
```

```
1));k1f2:=int(cpaum,T=T1f..T2ti)/int(cvaum,T=T1f..T2ti);eq12:=T1f*piF1^
((k1f2-1)/k1f2)-
```

```
T2ti=0;T2t:=fsolve(eq12,T2ti);h2t:=int(cpaum,T=Ta..T2t);h2r:=h1f+(h2t-
h1f)/es12;T2r:=fsolve((int(cpaum,T=Ta..T2ri)-h2r),T2ri);es02:=(h2t-
```

```
h0)/(h2r-h0);PF1:=G*(h2r-h1f);
```

```
compression_F1
h1f := 14.9697442(
```

Tlf := 287.999999

k11f := 1.39790441'

p1f := 0.996714225

 $k1f2 := (1.010375951T2ti - 289.0231202 - 0.00007277369865T2ti^{2} + 1.96066188210^{-7} T2ti^{3} - 9.33005569210^{-11} T2ti^{4} + 1.47700025610^{-14} T2ti^{5}) / (0.7233012736T2ti - 206.3642627 - 0.00007244685905T2ti^{2} + 1.95640122910^{-7} T2ti^{3}$

 $- 9.30353188510^{-11} T2ti^4 + 1.47161083710^{-14} T2ti^5 \big)$

```
eq12 :=
```

```
287.99999999
(((1.010375951 T2ti - 289.0231202
1.288
- 0.00007277369865 T2ti<sup>2</sup> + 1.960661882 10<sup>-7</sup> T2ti<sup>3</sup>
```

 $- 9.330055692 \ 10^{-11} \ T2ti^4 + 1.477000256 \ 10^{-14} \ T2ti^5 \big) \big/ \big(0.7233012736 \ T2ti$

 $-\ 206.3642627 - 0.00007244685905 \ T2ti^2 + 1.956401229 \ 10^{-7} \ T2ti^3$

 $-9.303531885 10^{-11} T2ti^4 + 1.471610837 10^{-14} T2ti^5) - 1)$

 $\big(0.7233012736\ T2ti-206.3642627-0.00007244685905\ T2ti^2$

+ 1.956401229 10⁻⁷ $T2ti^3$ - 9.303531885 10⁻¹¹ $T2ti^4$

+ 1.471610837 10⁻¹⁴ $T2ti^5$)) / (1.010375951 T2ti - 289.0231202

- 0.00007277369865 *T2ti*² + 1.960661882 10⁻⁷ *T2ti*³

$$-9.330055692 \ 10^{-11} \ T2tt^4 + 1.477000256 \ 10^{-14} \ T2tt^5) - T2ti = 0$$

T2t := 309.471934($h2t := 36.6572189^{2}$ h2r := 38.5430863

T2r := 311.3365548

```
es02 := 0.9199999999
```

```
PF1 := 8462.82981'
```

>

```
speed_of_first_jet;p2:=plf*piF1;k2a:=int(cpaum,T=T2r..Ttai)/int(cvaum,T
=T2r..Ttai);Tta:=fsolve((T2r*(p0/p2)^((k2a-1)/k2a)-
Ttai),Ttai);wat:=sqrt(2000*int(cpaum,T=Tta..T2r));war:=wat*fi2a;Th1:=G1
*war;Tra:=T2r-(T2r-Tta)*fi2a^2;Rgpa:=int(Raum,T=Tta..Tra)/(Tra-
Tta);ka:=int(cpaum,T=Tra..Tta)/int(cvaum,T=Tra..Tta);Machar:=war/sqrt(1
```

000*Rgpa*ka*Tra);

```
speed_of_first_jet
```

```
p2 := 1.283767922
```

```
k2a := (1.010375951Ttai - 312.5964624 - 0.00007277369865Ttai^2)
```

```
+ 1.96066188210^{-7} Ttai^{-3} - 9.33005569210^{-11} Ttai^{-4}
```

```
+ 1.47700025610^{-14} Ttai^{5}) / (0.7233012736Ttai - 223.2407787)
```

```
-0.00007244685905T tai^{2} + 1.95640122910^{-7} T tai^{3}
```

```
-9.30353188510^{-11} Ttai^{4} + 1.47161083710^{-14} Ttai^{5}
```

Tta := 291.098403.

wat := 202.222815.

```
war := 200.200587
```

```
Th1 := 49362.42849
```

Tra := 291.501142:

Rgpa := 0.286968438

ka :=1.39733757(

```
Machar := 0.585568196.
```

>

```
compression_F2;k23:=int(cpaum,T=T2r..T3ti)/int(cvaum,T=T2r..T3ti);eq23:
=T2r*piF2^((k23-1)/k23)-
```

```
T3ti=0;T3t:=fsolve(eq23,T3ti);h3t:=int(cpaum,T=Ta..T3t);h3r:=h2r+(h3t-
```

h2r)/es23;T3r:=fsolve((int(cpaum,T=Ta..T3ri)-

```
h3r),T3ri);p3:=p2*piF2;PF2:=(G-G1)*(h3r-h2r);
```

compression_F2

$$k23 := (1.010375951T3ti - 312.5964624 - 0.00007277369865T3ti^{2} + 1.96066188210^{-7}T3ti^{3} - 9.33005569210^{-11}T3tt^{4} + 1.47700025610^{-14}T3tt^{5}) / (0.7233012736T3ti - 223.2407787 - 0.00007244685905T3ti^{2} + 1.95640122910^{-7}T3tt^{3} - 9.30353188510^{-11}T3tt^{4} + 1.47161083710^{-14}T3tt^{5})$$

eq23 :=

311.3365548

(((1.010375951 *T3ti* - 312.5964624

1.354813665

- 0.00007277369865 *T3ti*² + 1.960661882 10⁻⁷ *T3ti*³

 $-9.330055692 \ 10^{-11} \ T3ti^4 + 1.477000256 \ 10^{-14} \ T3ti^5) / (0.7233012736 \ T3ti$

 $-\ 223.2407787 - 0.00007244685905\ T3ti^2 + 1.956401229\ 10^{-7}\ T3ti^3$

 $-9.303531885 10^{-11} T3ti^{4} + 1.471610837 10^{-14} T3ti^{5}) - 1)$

 $(0.7233012736 \ T3ti - 223.2407787 - 0.00007244685905 \ T3ti^2$

 $+ 1.956401229 \, 10^{-7} \, T3ti^3 - 9.303531885 \, 10^{-11} \, T3ti^4$

+ 1.471610837 10⁻¹⁴ $T3ti^5$)) / (1.010375951 T3ti - 312.5964624

- 0.00007277369865 *T3ti*² + 1.960661882 10⁻⁷ *T3ti*³

 $-9.330055692\ 10^{-11}\ T3ti^4 + 1.477000256\ 10^{-14}\ T3ti^5)$

-T3ti=0

T3t := 339.296254! h3t := 66.8738811! h3r := 69.3374285! T3r := 341.722740! p3 := 1.73926632! PF2 := 3462.36636!

```
speed_of_second_jet;p3:=p2*piF2;k3b:=int(cpaum,T=T3r..Ttbi)/int(cvaum,T
=T3r..Ttbi);Ttb:=fsolve((T3r*(p0/p3)^((k3b-1)/k3b)-
Ttbi),Ttbi);wbt:=sqrt(2000*int(cpaum,T=Ttb..T3r));wbr:=wbt*fi3b;Th2:=G2
*wbr;Trb:=T3r-(T3r-Ttb)*fi3b^2;Rgpb:=int(Raum,T=Ttb..Trb)/(Trb-
Ttb);kb:=int(cpaum,T=Trb..Ttb)/int(cvaum,T=Trb..Ttb);Machbr:=wbr/sqrt(1
000*Rgpb*kb*Trb);
```

speed_of_second_jet

p3 :=1.73926632.

```
k3b := (1.010375951Ttbi - 343.3908045 - 0.00007277369865Ttbi^{2})
```

 $+ 1.96066188210^{-7} Ttbi^{3} - 9.33005569210^{-11} Ttbi^{4}$

 $+ 1.47700025610^{-14} Ttbi^{5}) / (0.7233012736Ttbi - 245.3153895)$

```
-0.00007244685905Ttbi^{2} + 1.95640122910^{-7} Ttbi^{3}
```

 $-9.30353188510^{-11} Ttbi^{4} + 1.47161083710^{-14} Ttbi^{5}$

Ttb := 293.195167

```
wbt := 313.448985.
```

- wbr := 310.3144954
- *Th2* := 25504.2160(
- *Trb* := 294.160866

```
Rgpb := 0.286968078.
```

kb :=1.39719280.

```
Machbr := 0.9035759242
```

>

```
compression_34;k34:=int(cpaum,T=T3r..T4ti)/int(cvaum,T=T3r..T4ti);eq34:
=T4ti-T3r*piC^((k34-
```

```
1)/k34);T4t:=fsolve(eq34,T4ti);h4t:=int(cpaum,T=Ta..T4t);h4r:=h3r+(h4t-
```

h3r)/es34;T4r:=fsolve((int(cpaum,T=Ta..T4ri)-

h4r),T4ri);p4:=p3*piC;PC:=G3*(h4r-h3r);

compression_34

$$k34 := (1.010375951T4ti - 343.3908045 - 0.00007277369865T4ti^{2} + 1.96066188210^{-7} T4ti^{3} - 9.33005569210^{-11} T4ti^{4} + 1.47700025610^{-14} T4ti^{5}) / (0.7233012736T4ti - 245.3153895 - 0.00007244685905T4ti^{2} + 1.95640122910^{-7} T4ti^{3} - 9.30353188510^{-11} T4ti^{4} + 1.47161083710^{-14} T4ti^{5})$$

eq34 := T4ti - 341.7227402 $(((1.010375951 T4ti - 343.3908045 18.73925502 - 0.00007277369865 T4ti^{2} + 1.960661882 10^{-7} T4ti^{3} - 9.330055692 10^{-11} T4ti^{4} + 1.477000256 10^{-14} T4ti^{5}) / (0.7233012736 T4ti - 245.3153895 - 0.00007244685905 T4ti^{2} + 1.956401229 10^{-7} T4ti^{3} - 9.303531885 10^{-11} T4ti^{4} + 1.471610837 10^{-14} T4ti^{5}) - 1)$ $(0.7233012736 T4ti - 245.3153895 - 0.00007244685905 T4ti^{2} + 1.956401229 10^{-7} T4ti^{3} + 1.956401229 10^{-7} T4ti^{3} - 9.303531885 10^{-11} T4ti^{4} + 1.471610837 10^{-14} T4ti^{5}) - 1)$ $(0.7233012736 T4ti - 245.3153895 - 0.00007244685905 T4ti^{2} + 1.956401229 10^{-7} T4ti^{3} - 9.303531885 10^{-11} T4ti^{4} + 1.471610837 10^{-14} T4ti^{5}) - 1)$ $(0.7233012736 T4ti - 245.3153895 - 0.00007244685905 T4ti^{2} + 1.956401229 10^{-7} T4ti^{3} - 9.303531885 10^{-11} T4ti^{4} + 1.471610837 10^{-14} T4ti^{5}))$

 $T4t := 758.590791^{2}$ h4t := 508.934142($h4r := 568.879148^{2}$ T4r := 812.7784019 $p4 := 32.5925551^{2}$ $PC := 15109.5692^{2}$

>

combustion;T5:=1540;p5:=p4*0.97;eca:=0.98;GO2:=gaumO2*G3;GN2:=gaumN2*G3
;GCO2:=gaumCO2*G3;GH2O:=gaumH2O*G3;h5N2:=int(cpN2,T=T0..T5);h5CO2:=int(
cpCO2,T=T0..T5);h5O2:=int(cpO2,T=T0..T5);h5H2O:=10+int(cpH2O,T=T0..T5);
u5N2:=int(cvN2,T=T0..T5);u5CO2:=int(cvCO2,T=T0..T5);u5O2:=int(cvO2,T=T0..T5

combustion

- *T5* := 1540
- p5 := 31.6147785
- eca := 0.98
- *GO2* := 6.832498590
- *GN2* := 22.6868801{
- GCO2 := 0.602418812⁴
- *GH2O* := 0.125064004'
- *h5N2* := 1431.552090
- *h5CO2* := 1456.20844.
- *h5O2* := 1324.93416.
- *h5H2O* := 5299.907998
- u5N2 := 1060.01493
- *u5CO2* := 1226.95512:
- *u5O2* := 999.282467.
- *u5H2O* := 4595.84717(

```
> eq45:=eca*mcb*Hs+G3*(h4r+gaumH2O*10)-GN2*h5N2-
```

(GCO2+44*mcb*gC/12)*h5CO2-(GH2O+18*mcb*gH2/2)*h5H2O-(GO2-

```
32*mcb*(gC/12+gH2/4))*h502=0;mcb:=fsolve(eq45,mcb);
```

```
eq45 := 37979.71298mcb - 25550.66774 = 0
```

mcb := 0.672745150!

>

```
GO2consumat:=32*mcb*(gC/12+gH2/4);alfaO2:=GO2/GO2consumat;Gga:=G3+mcb;
```

GO2consumat := 2.33218318! alfaO2 := 2.92965776:

Gga := 30.9196067:

>

h5:=(GN2*h5N2+(GCO2+44*mcb*gC/12)*h5CO2+(GH2O+18*mcb*gH2/2)*h5H2O+(GO2-32*mcb*(gC/12+gH2/4))*h5O2)/Gga;u5:=(GN2*u5N2+(GCO2+44*mcb*gC/12)*u5CO2+(GH2O+18*mcb*gH2/2)*u5H2O+(GO2-32*mcb*(gC/12+gH2/4))*u5O2)/Gga;

h5 := 1547.458888

u5 := 1183.90878*′*.

```
> eqpr1:=Gga*(h5-h6)-(PF1+PF2+PC)/em=0;
```

eqpr1 := 20538.97638 - 30.91960675*h*6 = 0

```
> h6r:=fsolve(eqpr1,h6);h6t:=h5-(h5-h6r)/es56;
```

h6r := 664.270297'

h6t := 607.8965575

```
>
```

```
h6N2:=int(cpN2,T=T0..T6); h6CO2:=int(cpCO2,T=T0..T6); h6O2:=int(cpO2,T=T0
..T6); h6H2O:=10+int(cpH2O,T=T0..T6);
```

```
h6N2 := 1.07623000076 - 301.9771738 - 0.000162982000076^{2}
+ 2.64062000010<sup>-7</sup> T6<sup>3</sup> - 1.16534250010<sup>-10</sup> T6<sup>4</sup>
+ 1.77429600010<sup>-14</sup> T6<sup>5</sup>
```

```
h6CO2 := 0.471580000076 - 191.6187609 + 0.000775000000076^{2} 
- 3.84156666710^{-7} T6^{3} + 1.05037500010^{-10} T6^{4}
```

```
-1.20226200010^{-14} T6^{5}
```

```
h6O2 := 0.8239700000T6 - 250.1907158 + 0.0001527935000T6^2
```

```
+ 1.77363000010<sup>-8</sup> T6^3 - 3.25342500010<sup>-11</sup> T6^4
```

```
+ 7.16450000010^{-15} T6^{5}
```

```
h6H2O := 1970.192045 + 1.84336000076 - 0.000115611500076^2
```

 $+ 3.988666666710^{-7} T6^3 - 1.53815750010^{-10} T6^4$

```
+ 2.0030000010<sup>-14</sup> T6^5
```

> eq6r:=h6r-

(GN2*h6N2+(GCO2+44*mcb*gC/12)*h6CO2+(GH2O+18*mcb*gH2/2)*h6H2O+(GO2-32*mcb*(gC/12+gH2/4))*h6O2)/Gga=0;eq6t:=h6t-

(GN2*h6N2+(GCO2+44*mcb*gC/12)*h6CO2+(GH2O+18*mcb*gH2/2)*h6H2O+(GO2-32*mcb*(gC/12+gH2/4))*h6O2)/Gga=0;

```
eq6r := 873.1449765 - 1.01236654576 + 0.0000335566242276^{2}- 1.76127911310^{-7} 76^{-3} + 8.62118048010^{-11} 76^{-4}- 1.36813048410^{-14} 76^{-5} = 0
```

```
eq6t := 816.7712367 - 1.01236654576 + 0.0000335566242276^2
```

```
-1.76127911310^{-7} T6^{3} + 8.62118048010^{-11} T6^{4}
```

 $-1.36813048410^{-14} T6^5 = 0$

> T6r:=fsolve(eq6r,T6);T6t:=fsolve(eq6t,T6);

```
T6r := 822.0479140
```

T6t := 772.9267960

```
>
```

```
u6N2t:=int(cvN2,T=T0..T6t);u6CO2t:=int(cvCO2,T=T0..T6t);u6O2t:=int(cvO2
,T=T0..T6t);u6H2Ot:=u0+int(cvH2O,T=T0..T6t);u6N2r:=int(cvN2,T=T0..T6r);
u6CO2r:=int(cvCO2,T=T0..T6r);u6O2r:=int(cvO2,T=T0..T6r);u6H2Or:=u0+int(
cvH2O,T=T0..T6r);u6t:=(GN2*u6N2t+(GCO2+44*mcb*gC/12)*u6CO2t+(GH2O+18*mc
b*gH2/2)*u6H2Ot+(GO2-
```

```
32*mcb*(gC/12+gH2/4))*u6O2t)/Gga;u6r:=(GN2*u6N2r+(GCO2+44*mcb*gC/12)*u6
CO2r+(GH2O+18*mcb*gH2/2)*u6H2Or+(GO2-
```

```
32*mcb*(gC/12+gH2/4))*u602r)/Gga;PT:=Gga*(h5-h6r);DP:=PT-
```

```
(PC+PF2+PF1)/em;
```

```
u6N2t := 373.842217
```

```
u6CO2t := 402.7249012
```

u6O2t := 350.3280560

```
u6H2Ot := 3110.91518(
```

```
u6N2r := 414.259904.
```

```
u6CO2r :=450.843682(
```

u6O2r := 389.119662

 $u6H2Or := 3193.77362^{2}$

u6t := 464.408458(

```
u6r := 506.6800250
```

PT := 27307.84390

DP := 0.

```
> k56:=(h5-h6t)/(u5-u6t);p6:=p5*(T6t/T5)^(k56/(k56-1));
```

```
k56 := 1.30585393'
```

p6 := 1.66596871

>

```
p7:=p0;h7N2:=int(cpN2,T=T0..T7);h7CO2:=int(cpCO2,T=T0..T7);h7O2:=int(cp
O2,T=T0..T7);h7H2O:=l0+int(cpH2O,T=T0..T7);u7N2:=int(cvN2,T=T0..T7);u7C
O2:=int(cvCO2,T=T0..T7);u7O2:=int(cvO2,T=T0..T7);u7H2O:=u0+int(cvH2O,T=
T0..T7);h7t:=(GN2*h7N2+(GCO2+44*mcb*gC/12)*h7CO2+(GH2O+18*mcb*gH2/2)*h7
H2O+(GO2-
```

32 mcb (gC/12+gH2/4) + h702)/Gga; u7t := (GN2*u7N2+(GC02+44*mcb*gC/12)*u7C0)2+(GH20+18*mcb*gH2/2)*u7H20+(GO2-

```
32 \text{mcb} (gC/12+gH2/4) \times u702) / Gga; k67 := (h6r-h7t) / (u6r-u7t);
```

p7 := 1.01325

```
h7N2 := 1.076230000T7 - 301.9771738 - 0.0001629820000T7^2
```

- + 2.64062000010⁻⁷ $T7^3$ 1.16534250010⁻¹⁰ $T7^4$
- $+ 1.77429600010^{-14} T7^{5}$

```
h7CO2 := 0.4715800000T7 - 191.6187609 + 0.0007750000000T7^2
```

- $-3.84156666710^{-7} T7^{3} + 1.05037500010^{-10} T7^{4}$
- $-1.20226200010^{-14} T7^{5}$

```
h7O2 := 0.8239700000T7 - 250.1907158 + 0.0001527935000T7^{2} 
+ 1.77363000010^{-8} T7^{3} - 3.25342500010^{-11} T7^{4} 
+ 7.16450000010^{-15} T7^{5}
```

```
h7H2O := 1970.192045 + 1.84336000077 - 0.000115611500077^{2} 
+ 3.988666666710^{-7} T7^{-3} - 1.53815750010^{-10} T7^{-4} 
+ 2.00300000010^{-14} T7^{-5}
```

```
u7N2 := 0.7788400000T7 - 216.4257834 - 0.0001613795000T7^{2} 
+ 2.62327000010^{-7} T7^{3} - 1.15698750010^{-10} T7^{4} 
+ 1.75962200010^{-14} T7^{5} 
u7CO2 := 0.2820900000T7 - 137.4165703 + 0.000780000000T7^{2}
```

```
- 3.86263333310^{-7} T7^3 + 1.06034000010^{-10} T7^4- 1.21853600010^{-14} T7^5
```

```
u702 := 0.5657400000T7 - 175.5475052 + 0.0001484615000T7^{2} 
+ 2.18171666710^{-8} T7^{3} - 3.42295000010^{-11} T7^{4} 
+ 7.42814000010^{-15} T7^{5}
```

```
u7H2O := 1977.114606 + 1.381610000T7 - 0.0001146805000T7^{2} 
+ 3.97756666710^{-7} T7^{-3} - 1.53414250010^{-10} T7^{-4} 
+ 1.99953000010^{-14} T7^{-5}
```

```
h7t := 1.012366545T7 - 208.8746788 - 0.00003355662422T7^{2} 
+ 1.76127911310^{-7} T7^{3} - 8.62118048010^{-11} T7^{4} 
+ 1.36813048410^{-14} T7^{5}
```

```
u7t := 0.7246028460T7 - 130.2752195 - 0.00003254373812T7^{2} 
+ 1.75227845810^{-7} T7^{-3} - 8.57451015810^{-11} T7^{-4} 
+ 1.35966426310^{-14} T7^{-5}
```

```
k67 := (873.1449765 - 1.01236654577 + 0.0000335566242277^{2} - 1.76127911310^{7} T7^{3} + 8.62118048010^{-11} T7^{4} - 1.36813048410^{-14} T7^{5}) / (636.9552445 - 0.724602846077 + 0.0000325437381277^{2} - 1.75227845810^{-7} T7^{3} + 8.57451015810^{-11} T7^{4} - 1.35966426310^{-14} T7^{5})
```

> $eq67:=T7-T6r*(p7/p6)^{(k67-1)/k67}=0;$

```
eq67 := T7
- 822.0479146
(((873.1449765 - 1.012366545 T7)
0.6082047000
+ 0.00003355662422 T7^{2} - 1.761279113 10^{-7} T7^{3} + 8.621180480 10^{-11} T7^{4}
- 1.368130484 10^{-14} T7^{5}) / (636.9552445 - 0.7246028460 T7)
+ 0.00003254373812 T7^{2} - 1.752278458 10^{-7} T7^{3} + 8.574510158 10^{-11} T7^{4}
- 1.359664263 10^{-14} T7^{5}) - 1) (636.9552445 - 0.7246028460 T7)
+ 0.00003254373812 T7^{2} - 1.752278458 10^{-7} T7^{3} + 8.574510158 10^{-11} T7^{4}
- 1.359664263 10^{-14} T7^{5}) - 1) (637.1449765 - 1.012366545 T7)
+ 0.00003355662422 T7^{2} - 1.761279113 10^{-7} T7^{3} + 8.621180480 10^{-11} T7^{4}
- 1.368130484 10^{-14} T7^{5})
```

> T7t:=fsolve(eq67,T7);

= 0

T7t := 725.4114060

```
>
```

h7N2t:=int(cpN2,T=T0..T7t);h7CO2t:=int(cpCO2,T=T0..T7t);h7O2t:=int(cpO2,T=T0..T7t);h7O2t:=int(cpO2,T=T0..T7t);u7N2t:=int(cvN2,T=T0..T7t); u7CO2t:=int(cvCO2,T=T0..T7t);u7O2t:=int(cvO2,T=T0..T7t);u7H2Ot:=u0+int(cvH20,T=T0..T7t);h7t:=(GN2*h7N2t+(GCO2+44*mcb*gC/12)*h7CO2t+(GH2O+18*mcb*gH2/2)*h7H2Ot+(GO2-

32 mcb (gC/12+gH2/4)) *h702t) /Gga; u7t: = (GN2*u7N2t+(GC02+44*mcb*gC/12) *u7 C02t+(GH20+18*mcb*gH2/2) *u7H20t+(G02-

```
32 \text{mcb} (gC/12+gH2/4) \times u702t) / Gga; k67 := (h6r-h7t) / (u6r-u7t);
```

h7N2t := 465.062001

h7CO2t := 438.3203519

h7O2t := 427.1303259

h7H2Ot := 3360.23788*′*.

u7N2t := 335.2661492

u7CO2t := 357.134521(

u7O2t := 313.312262.

u7H2Ot := 3032.372130

h7t := 553.957513

u7t := 424.111554

*k*67 := 1.336015840

```
> speed_of_third_jet;wcr:=fi6c*sqrt(2000*(h6r-
```

```
h7t); Rfg:=(GN2*RN2+(GCO2+44*mcb*gC/12)*RCO2+(GH2O+18*mcb*gH2/2)*RH2O+(GO2-32*mcb*(gC/12+gH2/4))*RH2O)/Gga; h7r:=h6r-fi6c^2*(h6r-h7t);
```

```
speed_of_third_jet
```

wcr := 465.010881

```
Rfg := 0.3173858154 - 0.000003557820116T + 4.96677154510^{-9} T^2
```

```
-3.08753177910^{-12} T^3 + 6.40426393410^{-16} T^4
```

h7r := 556.152737:

>

```
h7N2r:=int(cpN2,T=T0..T7ri);h7C02r:=int(cpC02,T=T0..T7ri);h702r:=int(cpO2,T=T0..T7ri);h702r:=int(cpO2,T=T0..T7ri);h7H2Or:=10+int(cpH2O,T=T0..T7ri);T7r:=fsolve(h7r-(GN2*h7N2r+(GC02+44*mcb*gC/12)*h7C02r+(GH2O+18*mcb*gH2/2)*h7H2Or+(GO2-32*mcb*(gC/12+gH2/4))*h7O2r)/Gga,T7ri);u7N2r:=int(cvN2,T=T0..T7r);u7C02r:=int(cvC02,T=T0..T7r);u7O2r:=int(cvO2,T=T0..T7r);u7H2Or:=u0+int(cvH2O,T=T0..T7r);u7r:=(GN2*u7N2r+(GC02+44*mcb*gC/12)*u7C02r+(GH2O+18*mcb*gH2/2)*u7H2Or+(GD2-32*mcb*(gC/12+gH2/4))*u7O2r)/Gga;k7:=(h7r-h7t)/(u7r-u7t);Rfqc:=int(Rfq,T=T7t..T7r)/(T7r-
```

```
T7t);Machc:=wcr/sqrt(1000*Rfgc*k7*T7r);
```

```
h7N2r := 1.076230000T7ri - 301.9771738 - 0.0001629820000T7ri^{2} 
+ 2.64062000010^{-7} T7ri^{3} - 1.16534250010^{-10} T7ri^{4} 
+ 1.77429600010^{-14} T7ri^{5}
```

```
h7CO2r := 0.471580000077ri - 191.6187609
```

- $+ 0.000775000000077ri^2 3.84156666710^{-7} T7ri^3$
- + 1.05037500010⁻¹⁰ $T7ri^4$ 1.20226200010⁻¹⁴ $T7ri^5$
- $h7O2r := 0.8239700000T7ri 250.1907158 + 0.0001527935000T7ri^{2}$
 - $+ 1.77363000010^{-8} T7ri^{3} 3.25342500010^{-11} T7ri^{4}$
 - $+ 7.1645000010^{-15} T7ri^{5}$

```
h7H2Or := 1970.192045 + 1.843360000T7ri - 0.0001156115000T7ri^{2}
```

```
+ 3.988666666710^{-7} T7ri^{3} - 1.53815750010^{-10} T7ri^{4}
```

 $+ 2.0030000010^{-14} T7ri^{5}$

T7r := 727.3553110

u7N2r := 336.834396'

```
u7CO2r := 358.9801159
```

```
u7O2r := 314.816491:
```

```
u7H2Or := 3035.55479
```

u7r := 425.748645'

*k*7 :=1.34092973

Rfgc := 0.316417059.

```
Machc := 0.837060509
```

>

```
Thfg:=Gga*wcr;Th:=Th1+Th2+Thfg;mcbspecific:=36000*mcb/Th;difmcbspecific
:=100*(0.383-mcbspecific)/0.383;
```

Thfg := 14377.95360

Th := 89244.5981:

mcbspecific := 0.271375813(

difmcbspecific := 29.1446961

> X:=(PF1+PF2+PC) / (PT+Gga*(h6r-

h7r));XT:=(es12*PF1+es23*PF2+es34*PC)/(PT/es56+Gga*(h6t-h7t));

X := 0.882024896.

XT := 0.7899951402

> save R,RF, X,piF1, piF2, piF,piC,war, wbr, wcr, Th1, Th2, Thfg, Th,

```
mcb,mcbspecific,difmcbspecific, G1,G2,G3,Gga, "date tripluflux";
> read "date tripluflux";
R := 10.869
RF := 3
X := 0.882024896.
piF1 := 1.288
piF2 := 1.35481366:
piF := 1.745
piC := 18.7392550.
war := 200.200587
wbr := 310.314495<sup>4</sup>
wcr := 465.010881
Th1 := 49362.42849
Th2 := 25504.2160(
Thfg := 14377.95360
Th := 89244.5981:
mcb := 0.672745150!
mcbspecific := 0.271375813(
difmcbspecific := 29.1446961
G1 := 246.564853
G2 := 82.18828460
G3 := 30.24686160
Gga := 30.9196067:
>
>
```

>