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Assumptions
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1. They will be analyzed non steady-state enlarged basic open 
thermodynamic systems, including both the thermal system and, the 
external heat reservoirs controlling the heat transfers and, the 
environment allowing the mass transfers; 

2. The working fluid is a mixture of different chemical species, the inlet 
and outlet compositions might be different because of chemical 
reactions that can appear during the flow through the thermal system; 

3. The inner boundary of the flow path through the thermal system is 
deformable under the environmental pressure;



Gouy – Stodola Theorem,  Engines
First Law of Thermodynamics

Second Law of Thermodynamics
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M: Mass of the working fluid surrounded by the operating engine inner walls at a certain operational time
V: Working fluid volume defined by the operating engine inner walls at a certain operational time
U: Inner operating engine working fluid energy at a certain operational time
S: Entropy of the working fluid surrounded by the operating engine inner walls at a certain operational time
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Gouy – Stodola Theorem,  Engines

Combined First and Second Laws of 
Thermodynamics
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Reversible Engine Power
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Irreversible Lost Power
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Gouy – Stodola Theorem,  Refrigeration Cycles

First Law of Thermodynamics

Second Law of Thermodynamics
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Combined First and Second Laws of 
Thermodynamics
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Reversible Consumed Power
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Irreversible Lost Power
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Conclusions
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Introduction to Irreversible Cycles

Assumptions
No mass transfer: 

and

Non deformable boundary walls:

Steady state operation:  
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Introduction to Irreversible Closed Cycles
Endo-reversible Carnot Cycle

Entropy Generation by Irreversibility
Enlarged System – including both the thermal system and 

the external heat reservoirs
Related to overall Irreversibility  (external + internal)
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or Nirrev is the overall irreversibility function related to T and T0,                

is the number of internal irreversibility related to (T - ∆T) and (T0 - ∆T0),  

Irr is the internal irreversibility function related to other reference temperatures  on the cycle

and         different from (T - ∆T) and (T0 - ∆T0)
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Introduction to Irreversible Closed Cycles
Endo-reversible Carnot cycle

Entropy Balance
Enlarged System – including both the thermal system and the 

external heat reservoirs
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Cyclic Heat Input

Introduction to Irreversible non-Carnot Closed Cycles
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Cyclic Heat Output

Introduction to Irreversible non-Carnot Closed Cycles
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Irreversible First Law Efficiency - Engines

Introduction to Irreversible non Carnot Closed Cycles
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Where T is the temperature of the heat source and,                    is a second law of thermodynamics correction 

function linking the heat transfer to the involved mean thermodynamic temperatures
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Irreversible First Law Efficiency - Refrigeration Cycles

Introduction to Irreversible non Carnot Closed Cycles

rev

gen00

TT

rev

irrev
loste

rev

rev
e

irrev
loste

rev
e

rev

e

rev
0W

e
irrev

irrev
ionrefrigerat

Q
ST

T
T1

1

Q
W

Q
W

1                    

WW
Q

W
Q

W
QCOPFLE

0

e



























−−
−=

+
−=

+
−=−===

<

<

,

,












∆θ
+−

−=

∆θ
−−

−=

−
qSLT

gen0

q
t5r4

mqSLT

gen00
irrev

sm
S

1
T
T1

1

sTm
ST

T
T1

1COP









( )0Carnot
0

1N

irrev0

qSLT

gen
0

irrev TTCOP
TT

T
TNT

T

T
sm

S
1T

TCOP
irrev

,=
−

<
−

=

−










∆θ
+

=
>





t5r4
mq

SLT T
T
−=θWhere T is the temperature of the heat source and,                    is a second law of thermodynamics correction 

function linking the heat transfer to the involved mean thermodynamic temperatures

Enlarged System Entropy Balance Equation

0
T
QN

T

Q

0

0
irrev =+−







LLLP  ERASMUS - NANCY - 2013

Conclusions

1. ηirrev and COPirrev includes explicitly the overall irreversibility (internal and external one)

2. has the meaning of the overall number of irreversibility, it evaluates both

the external irreversibility due to the heat transfer at finite temperature differences, and the internal ones.

3. When Sgen → 0 then Nirrev → 1 ,

4. The correction function θSLT links the heat input at temperature T to the heat absorbed by the working

fluid at temperature Tmq < T
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Conclusions – Engines

T0 = 273,15 K
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Conclusions – Refrigeration cycles

T0 + 293,15 K

Introduction to Irreversible non Carnot Closed Cycles
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THE WAY TO OPTIMIZE THE 
IRREVERSIBLE CYCLES

The optimization of cycles: 
first and second law efficiencies (exergy analysis),  
entropy generation minimization, and sometimes 
Novikov–Curzon–Ahlborn maximum power issue. 

The paper presents a concise method to evaluate directly the irreversibility, inside a 
unique criterion uniting first and second laws, called here the irreversible first law 
efficiency. 

Key words: 
NTUS, second law effectiveness of external heat exchanges
irreversible maximum power,
number of internal irreversibility, number of external irreversibility
irreversible first law efficiency
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Engines Reversibility Principle
- engineering realm -

The possible ideal engine cycles 
in temperature – entropy diagram
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All Complete Reversible Engine Cycles
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Introduction
“Optimization of Irreversible Cycles” , FTT or FST

The ideal cycles are characterized by no entropy generation,

The Finite Time Thermodynamics (FTT), or Finite Speed Thermodynamics (FST) is a feature
of the originator works of:

 CHAMBADAL (1957) and NOVIKOV (1958) – studies about nuclear cycles,
 CURZON et AHLBORN (1975) – the time-based thermodynamic analysis in view of the real

heat transfer made at finite temperature difference,
 YAN et al. (1989), GROSU et al. (2004), CHEN et al. (1997, 1999) – analyzed the

irreversible cycles with three external heat sinks

THE IDEAL REVERSIBLE CYCLES ARE CONSIDERED AS USELESS, THEY MIGHT SUPPLY THE
MAXIMUM ENGINES WORK, BUT NO POWER. THE REQUIRED TIME BY THE REVERSIBLE

HEAT TRANSFER AT INFINITESIMAL TEMPERATURE DIFFERENCE REQUIRES AN INFINITE
PROCESS TIME (I.E. THE POWER, WHICH IS RATIO WORK PER TIME IS IN FACT ZERO).

.0Sgen =
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The Irreversible First Law  Efficiency
External Irreversibility 

Endo-Reversible CARNOT Engine

The second law effectiveness of  the heat  exchange with the heat source
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The second law effectiveness of the heat exchange with the heat sinkT
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The dependence second law effectiveness – NTUS 
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Considerations on the Real Power Cycles

The real power cycles are also internally irreversible, respectively:
 the heat transfer processes, 2–3 and 4–1, are non-isothermal;
 the adiabatic processes, 2–3 and 4–1, are non-isentropic;
 the external heat reservoirs have finite heat capacities, respectively are non-

isothermal;
 the mean log temperature difference pertaining to the heat transfers has a value that it

is not equalizing the difference of the mean thermodynamic temperatures.

This dissimilarity can be solved step by step by introducing the necessary 
amendment coefficients in order to take into account also the internal irreversibility.
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The second law effectiveness of the heat  exchange with the heat source
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The second law effectiveness of the heat  exchange with the heat sink

0q

00
0 sm

AUNTUS
∆

=


Number of Transfer Units per Entropy Variation

Basic Equations

The second law effectiveness at the heat sink

Tmq0

Tmq
ΔTmq

ΔTmq0

T

s
( ) 0q0mq0mq0mq000 sTTmCTAUQ

0T
∆∆+=∆=

∆




⇒
−⋅

=∆
∆ 1CNTUS

1TT
0T0

0mq0mq ( )
1CNTUS

CNTUSsTmsTTmQ
0T0

0T0
0q0mq0q0mq0mq0 −⋅

⋅
∆=∆∆−=

∆

∆




( ) ⇒>
−⋅

⋅
==ε

∆

∆
∆

→∞
→∞

1
1CNTUS

CNTUSC
Q

Q

0T0

0T0
s

A
NTUS0

0
0II 0q

0




,

( )
→∞

→∞
∆∆

→∞
→∞

∆
∆

=
∆

∆
=

∆ε=ε=

A
NTUS0q

0q
s

mq

treansfer
heat

mean
0T

A
NTUS0q0mq0II0II0

0
0q s

s
C  

T
TC

sTmQQ

,

,min, 



minQQ0
 >⇒

The Irreversible First Law  Efficiency
External Irreversibility 

Any Endo-Reversible Engine

LLLP  ERASMUS - NANCY - 2013

Presenter
Presentation Notes
Aici am considerat ca sq0 corespunde unui schimbator de caldura si am adoptat conventia de la (first law) effectiveness of Hex pentru evaluarea fluxului termic minim minimorum. 




1 – 2r irreversible adiabatic compression, 2r – 3r irreversible heating 
3r – 4r irreversible adiabatic expansion, 4r – 1 irreversible cooling
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1 – 2r irreversible adiabatic compression, 2r – 3r internal irreversible heating by 
heat regeneration, 3r – 4r irreversible heating, 4r – 5r irreversible adiabatic 

expansion, 5r – 6r internal irreversible cooling by heat regeneration, 
6r – 1 irreversible cooling.
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The Irreversible First Law  Efficiency
Internal Irreversibility 

Any Irreversible Engine with Internal Heat 
Transfer (Internal Regeneration of Heat)
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The Irreversible First Law  Efficiency
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Any Irreversible Engine with Internal Heat 
Transfer (Internal Regeneration of Heat)
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The Irreversible First Law  Efficiency
Internal Irreversibility 

Any Irreversible Co-generation Engine
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Numerical Results

The computational procedure assumed the following restrictive 
conditions. 
Variable heat capacities of gases,  fourth degree temperature 
polynomials;
Adiabatic exponents of the reversible processes computed as the ratio of 
enthalpy variation to internal energy variation.
In the case of engine heated by combustion, they were considered 
negligible dissociation during combustion, and the mass and energy 
balance equations of combustion gave the flue gases composition, the 
excess air value, and the fuel mass flow rate.
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Numerical Results

First Figures compare the oxy-combustion with 90% mass fraction of O2 in the oxygenated air, 
and the air combustion, for an open Joule – Brayton cogeneration cycle. The restrictive conditions 
were: maximum temperature on the cycle, 1200°C; isentropic efficiency of the compressor, 0.88; 
isentropic efficiency of the gas turbine, 0.94; pressure loss coefficient in the combustion chamber, 
0.98; the fuel mass composition of 15% H2 and 85% C; higher heating value of the fuel ~46,000 
kJ/kg.
Next Figures compare six possible working fluids, air, O2, N2, CO2, H2 and He, in a closed Joule –
Brayton engine cycle externally heated, e.g. by solar energy. The restrictive conditions were: 
maximum temperature on the cycle, 1000°C; the minimum temperature on the cycle, 20°C; 
isentropic efficiency of the compressor, 0.88; isentropic efficiency of the gas turbine, 0.94; 
pressure loss coefficient in the heat exchanger connecting the external hot source, 0.98; pressure 
loss coefficient in the heat exchanger connecting the external cold sink, 0.98; variable heat 
capacities; adiabatic exponent computed as the ratio of heat capacities at constant pressure and 
constant volume.
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Numerical Results

The dependence number of internal irreversibility – compression ratio for the basic engine cycle
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Numerical Results

The dependence overall number of internal irreversibility – compression ratio for the 
cogeneration cycle
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Numerical Results

The dependence specific power output on compression ratio for the basic engine cycle
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Numerical Results

The dependence irreversible first law efficiency (thermodynamic efficiency) on compression ratio for the 
basic engine cycle
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Numerical Results

Comparison of the dependence irreversible first law efficiency (thermodynamic efficiency) on compression 
ratio for both the basic engine cycle and the engine cycle with internal regeneration of heat, only for 

CO2 as working fluid
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Numerical Results

The dependence number of internal irreversibility on compression ratio for the basic engine cycle
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Conclusions

This paper deals with a new optimization criteria, the irreversible first law 
efficiency applied to the real cycles. 
This new approach emphasizes the overall irreversibility by the means of the 
numbers of internal and external irreversibility, directly inside the first law 
efficiency.
It yields that the maximum power is not unique, as it was assumed untill now, 
respectively depends on the nature of the working fluid and on the restrictive 
conditions.
The irreversible first law efficiency conducts to the reversible limit, i.e. the 
reversible Carnot engine, respectively offers the simplest comparison.
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Conclusions

For complex cycles, we have only to deal carefully with the entropy variations 
and thermal interactions during the heat transfer processes. 

Important remark: the second law effectiveness, defined in this paper, takes 
into account only the thermal interactions connecting the working fluids with 
external heat reservoirs, the internal heat exchanges of complex cycles, e.g. in 
the case of combined cycles, the heat transfer between the top cycle and the 
bottom one is included in the number of internal irreversibility; for instance, refer 
to the simple manner to manage the internal heat exchange of Power Cycles 
with Internal Heat Transfer. 
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Conclusions

The direct method presented in this presentation is a concise one, equivalent to 
exergy analysis, since the lost exergy is proportional to the entropy irreversibly 
generated. The comparison of possible fluids used in a closed Joule – Brayton 
cycle, externally heated, shows that CO2 offers a substantial potential for 
internal regeneration of heat, see the below table, that includes the difference of 
temperatures of the fluid leaving the turbine and the compressor.
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Conclusions

Table 1. The difference between temperatures of the fluid leaving the turbine 
and the compressor, [°C] 

Compression Ratio Air O2 N2 CO2 He H2

5,00 401 423 397 593 123 367

10,00 158 191 152 431 41 115

15,00 17 57 9 337

20,00 272

25,00 221
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1. Introduction 
First and Second Laws Relationship – CV-HP

• First Law – Energy Balance
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1. Introduction 
First and Second Laws Relationship – CV-HP

• First Law – Energy Balance
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1. Introduction 
First and Second Laws Relationship – CV-HP

• Second Law – entropy balance
• Internal  irreversibility
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1. Introduction 
First and Second Laws Relationship – CV-HP

• United First and Second Laws
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2. Mathematical model

7

Thermal Relationships of a Solar Assisted Compression 

Vapor  Heat Pump (CV-HP)

SC

E

K

CTV

Tsco Tsci

Tho Thi

LLLP  ERASMUS - NANCY - 2013
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• Solar collector

– Collector temperature under non-flow conditions

– Collector plate temperature

– Inlet temperature of the solar heat carrier

– Outlet temperature of the solar heat carrier 

ηo is optical efficiency of solar collector, Ta is environmental temperature, UL is solar collector 

heat-loss coefficient; εsc is solar collector effectiveness; I is total solar radiation.
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• Heating system
Inlet/outlet temperatures of the useful heat carrier, were imposed by considering that the

heating system asks:

 at Ta = TaN = 253.15K, Thi = ThiN = 323.15K and, Tho = ThoN = 333.15K;

 at Ta = TaS = 288.15K, Thi = ThiS = 303.15K;

 for 253.15 K < Ta < 288.15 K:

 Troom = 295.15K.

807143.4675714286.0 +⋅−≅ aho TT
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• Evaporator

evaporator heat rate

evaporator temperature

Where εe is evaporator effectiveness.
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• Heat pump irreversibility (entropy and energy balance)
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• Condenser
Condensing  temperature

Where  εc is condenser effectiveness
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By CoolPack, and for adopted restrictive conditions inside the heat
pump, it was interpolated, by square roots, the irreversibility, for
303.15K < Tc < 338.15K, and, 258.15K < Te < 288.15K:

• refrigerant R22, errors: +1.1%, – 3.1%

• refrigerant R717, errors: +1.1%, – 1.8%

• refrigerant R410A, errors: +1.1%, – 6.6% 

• refrigerant R407c, errors: +1.1%, – 4.9%

• refrigerant R290, errors: +1.1%, – 3.7%

• refrigerant R134a, errors: +1.1%, – 3.6%
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• Power balance
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3. Results and discussion

• The correlated compilation of previous equations allowed in 
MathLab to find out numerical results, depending only on εe
and εc. Figures 2 to 5 show selected numerical results for:
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3. Results and discussion
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Fig.2. R22

Fig.3. R717 
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Fig.4. R22

Fig.5. R717 
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3. Conclusions
The presentation presents a mathematical algorithm
able in modeling the influences of evaporator and
condenser effectiveness upon the all operational
features of a heat pump: power, heat rates, and
temperatures. The model start with the external heat
sources imposed parameters and, combine these ones
by the internal irreversibility of the heat pump (entropy
balance).
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